PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion planning of wheeled mobile robots subject to slipping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most dynamic models of wheeled mobile robots assume that the wheels undergo rolling without slipping, thus in general wheeled mobile robots are considered as nonholonomic systems. This paper deals with the problem of motion planning of mobile robots, whose nonholonomic constraints have been violated during the motion. The slipping phase is studied in details. A static model of interaction forces between wheels and ground is adopted by means of the singular perturbation approach [2]. A novel control theoretic framework for mobile robots subject to slipping is defined: both kinematics and dynamics of a mobile robot are modeled as a control system with outputs, the performance of a locally controllable system is nontrivial, the Jacobian of the mobile robot is defined in terms of the linear approximation to the system [36]. A novelty of the methodology consists in respecting of the analogy between the stationary and mobile robots and deriving performance characteristics from local controllability. In this paper we address the problem of motion planning by means of the Jacobian pseudo inverse algorithm. The effectiveness of the Jacobian pseudo inverse motion planning algorithm is demonstrated with reference to differential drive type robot (Pioneer 2DX) subject to slipping.
Twórcy
autor
  • Institute of Computer Engineering, Control and Robotics; Wrocław University of Technology; ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland, Katarzyna.Zadarnowska@pwr.wroc.pl
Bibliografia
  • [1] B. d’Andrea-Novel, G. Bastin and G. Campion, ”Dynamic feedback linearization of nonholonomic wheeled mobile robot”, in: [1] B. d’Andrea-Novel, G. Bastin and G. Campion, ”Dynamic feedback linearization of nonholonomic wheeled mobile robot”, in: Proc. of the IEEE Conf. on Robotics and Automation, Nice, 1992, pp. 2527–2532.
  • [2] B. d’Andrea-Novel G. Campion and G. Bastin, ”Control of wheeled mobile robots not satisfying ideal velocity constraints: a singular perturbation approach”, Int. J. of Robust and Nonlinear Control, 5, 1995, pp. 243–267.
  • [3] R. Balakrishna and A. Ghosal, ”Modeling of Slip for Wheeled Mobile Robots”, IEEE Trans. on Robotics and Automation, 11(1), 1995, pp. 126–132.
  • [4] B. Bayle, J.-Y. Fourquet and M. Renaud, ”Manipulability of wheeled mobile manipulators: application to motion generation”, Int. J. Robot. Res., 22(7–8), 2003, pp. 565–581.
  • [5] A. M. Bloch, M. Reyhanoglu and N. H. McClamroch, ”Control and stabilization of nonholonomic dynamic systems”, IEEE Trans. on Automatic Control, AC-37, 1992, pp. 1746–1757.
  • [6] D. Caltabiano, D. Ciancitto and G. Muscato, ”Experimental Results on a Traction Control Algorithm for Mobile Robots in Volcano Environment”, in: Proc. of the IEEE Int. Conf. on Robotics and Automation, New Orlean, LA, 2004, pp. 4375–4380.
  • [7] C. Canudas de Wit, P. Tsiotras, E. Velenis, M. Basset and G. Gissinger, ”Dynamic Friction Models for Road/Tire Longitudinal Interaction”, Vehicle System Dynamics, 39(3), 2003, pp. 189–226.
  • [8] L. Caracciolo, A. de Luca and S. Iannitti, ”Trajectory Tracking Control of a Four–Wheel Differentially Driven Mobile Robot”, in: Proc. of the IEEE Conf. on Robotics and Automation, Detroit, MI, 1999, pp. 2632–2638.
  • [9] P. Cheng, E. Frazzoli,V.Kumar, ”Motion Planning for the Roller Racer with a Sticking/Slipping Switching Model”, in: Proc. of the IEEE Conf. on Robotics and Automation, Orlando, FL, 2006, pp. 1637–1642.
  • [10] G. S. Chirikjian and A. B. Kyatkin, ”Engineering Applications of Noncommutative Harmonic Analysis”, CRC Press, Boca Raton, 2001.
  • [11] B. J. Choi and S. V. Sreenivasan, ”Motion Planning of A Wheeled Mobile Robot with Slip-Free Motion Capability”, in: Proc. of the IEEE Conf. on Robotics and Automation, Leuven, Belgium, 1998, pp. 3727–3732.
  • [12] H. Chou, and B. d’Andrea-Novel, ”Global vehicle control using differential braking torques and active suspension forces”, Vehicle System Dynamics, 43(4), 2005, pp. 261 – 284.
  • [13] P. R. Dahl, ”Solid Friction Damping of Mechanical Vibrations”, AIAA Journal, 14(12), 1976, pp. 1675–1682.
  • [14] W. E. Dixon, D. M. Dawson, E. Zergeroglu and A. Behal ”Nonlinear Control of Wheeled Mobile Robots”, Springer-Verlag, 2001.
  • [15] M. Ellouze, and B. d’Andrea-Novel, ”Control of Unicycle–Type Robots in the Presence of Sliding Effects with Only Absolute Longitudinal and Yaw Velocities Measurements”, European J. Control, 6, 2000, pp. 567–584.
  • [16] J. F. Gardner and S. A. Velinsky, ”Kinematics of mobile manipulators and implications for design”, J. Robot. Syst., 17(6), 2000, pp. 309–320.
  • [17] J. Giergiel et al., ”Symboliczne generowanie równan kinematyki mobilnego robota Pioneer – 2DX”, Przeglad Mechaniczny, 19-20/2000, 2000, pp. 26–31.
  • [18] K. Iagnemma and S. Dubovsky, ”Traction Control of Wheeled Robotic Vehicles in Rough Terrain with Application to Planetary Rovers”, Int. J. of Robotics Research, 23(10–11), 2004, pp. 1029–1040.
  • [19] G. Ishigami, K. Nagatani and K. Yoshida, ”Path Following Control with Slip Compensation on Loose Soil for Exploration Rover”, in: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, Beijing, China, 2006, pp. 5552–5557.
  • [20] J. Jakubiak and K. Tchon, ”Motion planning in endogenous configuration space”, in: 3rd International Workshop on Robot Motion and Control, 2002, pp. 231–236.
  • [21] S. Jung, J.T. Wen, ”Nonlinear Model Predictive Control for the Swing–Up of a Rotary Inverted Pendulum”, Journal of Dyn. Systems, Measurement, and Control, 126, 2004, pp. 666–673.
  • [22] U. Kiencke and L. Nielsen, Automotive Control Systems, Springer, 2000.
  • [23] K. Kozłowski and D. Pazderski, ”Modeling and control of a 4–wheel skid–steering mobile robot”, Int. J. Appl. Math. Comput. Sci., 14(4), 2004, pp. 477–496.
  • [24] P. Lamon and R. Siegwart, ”Wheel Torque Control in Rough Terrain – Modeling and Simulation”, in: Proc. of the IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, 2005, pp. 867–872.
  • [25] R. Lenain, B. Thuilot, C. Cariou and P. Martinet, ”Model Predictive Control for Vehicle Guidance in Presence of Sliding: Application to Farm Vehicles Path Tracking”, in: Proc. of the IEEE Int. Conf. On Robotics and Automation, Barcelona, Spain, 2005, pp. 885–890.
  • [26] F. Lizarralde, J. T. Wen, and L. Hsu, ”A New Model Predictive Control Strategy for Affine Nonlinear Control Systems”, in: Proc. 1999 American Control Conf., San Diego, CA, 1999, pp. 4263–4267.
  • [27] A. de Luca, G. Oriolo and P.R. Giordano, ”Kinematic modelling and redundancy resolution for nonholonomic mobile manipulators”, in; Proc. of the IEEE Int. Conf. on Robotics and Automation, Orlando, FL, 2006, pp. 1867–1873.
  • [28] J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1983.
  • [29] N. Matsumoto and M. Tomizuka, ”Vehicle lateral velocity and yaw rate control with two independent control inputs”, Transaction of the ASME, J. of Dynamics Systems, Measurement, and Control, 114, 1992, pp. 606–613.
  • [30] H. B. Pacejka and R. S. Sharp, ”Shear Force Developments by Pneumatic Tires in Steady–State Conditions: A Review of Modeling Aspects”, Vehicle Systems Dynamics, 20, 1991, pp. 121–176.
  • [31] S.-T. Peng, J.-J. Sheu and C.-C. Chang, ”A Control Scheme for Automatic Path Tracking of Vehicles Subject to Wheel Slip Constraint”, in: Proc. of the American Control Conf., Boston, MA, 2004, pp. 804–809.
  • [32] A. Ratajczak, J. Karpinska and K. Tchon, ”Task - priority motion planning of underactuated systems: an endogenous configuration space approach”, Robotica, 2009 (in press).
  • [33] N. Sidek and N. Sarkar, ”Dynamic Modeling and Control of Nonholonomic Mobile Robot with Lateral Slip”, in 3rd Int. Conf. on Systems, 2008, pp. 35–40.[34] H.J. Sussmann, ”A continuation method for nonholonomic path finding problems”, in: Proc. 32nd IEEE CDC, San Antonio, TX, 1993, pp. 2718–2723.
  • [34] H.J. Sussmann, ”A continuation method for nonholonomic path finding problems”, in: Proc. 32nd IEEE CDC, San Antonio, TX, 1993, pp. 2718–2723.
  • [35] H.-S. Tan and Y.-K. Chin, ”Vehicle traction control: variable structure control approach”, Trans. ASME J. Dyn. Syst., Meas., and Cont., 113, 1991, pp. 223–230.
  • [36] K. Tchon and J. Jakubiak, ”Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms”, Int. J. Control, 76(14), 2003, pp. 1387–1419.
  • [37] K. Tchon and Ł. Małek, ”On Dynamic Properties of Singularity Robust Jacobian Inverse Kinematics”, IEEE Trans. on Automatic Control, 54(6), 2009, pp. 1402–1406.
  • [38] K. Tchon and K. Zadarnowska, ”Kinematic dexterity of mobile manipulators: an endogenous configuration space approach”, Robotica, 21, 2003, pp. 521–530.
  • [39] Y. Yokokohji, S. Chaen and T. Yoshikawa, ”Evaluation of Traversability of Wheeled Mobile Robots on Uneven Terrains by Fractal Terrain Model”, in: Proc. of the IEEE Int. Conf. on Robotics and Automation, New Orlean, LA, 2004, pp. 2183–2188.
  • [40] G. Walsh, D. Tilbury, S. Sastry, R. Murray and J. P. Laumond, ”Stabilization of trajectories for systems with nonholonomic constraints”, in: Proc. of Int. Conf. on Robotics and Automation, Nice, 1992, pp. 1999–2004.
  • [41] R. L.Williams, B. E. Carter, P. Gallina and G. Rosati, ”Dynamic Model with Slip for Wheeled Omnidirectional Robots”, IEEE Trans. on Robotics and Automation, 18(3), 2002, pp. 285–293.
  • [42] K. Zadarnowska, K. Tchon, ”A control theory framework for performance evaluation of mobile manipulators”, Robotica, vol. 25, 2007, pp. 703–715.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0006-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.