PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion planning of the underactuated manipulators with friction in constrained state space

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the constrained motion planning problem for passive joint manipulators with friction. Constraints are imposed on a system state space vector. The dynamics of underactuated manipulators are described by a control-affine system with a drift term. In order to solve the constrained motion planning problem the imbalanced Jacobian algorithm derived from an endogenous configuration space approach is used. The state space constraints are included into the system representation of the manipulator dynamics. The extended system is subject to regularisation because of the Jacobian singularities, then the unconstrained motion planning problem is solved for the regularised system. The solution of the motion planning problem for this system is equivalent to the solution of the constrained motion planning problem for an original system. Performance of the imbalanced Jacobian algorithm has been demonstrated with series of simulation for the two kinds of manipulators with and without friction.
Twórcy
autor
autor
  • Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology, 50-372 Wrocław, Janiszewskiego 11/17, adam.ratajczak@pwr.wroc.pl
Bibliografia
  • [1] A. De Luca, S. Iannitti, R. Mattone, and G. Oriolo, “Control problems in underactuated manipulators,” in Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2001), (Como , Italy), pp. 855–861, July 2001.
  • [2] M. W. Spong, “Underactuated mechanical systems,” in Control Problems in Robotics and Automation (B. Siciliano and K. Valavanis, eds.), Springer-Verlag, 1997.
  • [3] M. W. Spong, “The swing up control problem for the Acrobot,” IEEE Control Systems Magazine, vol. 15, no. 1, pp. 49–55, 1995.
  • [4] M. W. Spong and D. J. Block, “The Pendubot: A mechatronic system for control research and education,” in Proc. IEEE Conference on Decision and Control (CDC 1995), (New Orleans, USA), pp. 555– 557, Dec. 1995.
  • [5] A. De Luca, S. Iannitti, and G. Oriolo, “Stabilization of a PR planar underactuated robot,” in Proc. IEEE International Conference on Robotics and Automation (ICRA 2001), (Seoul, Korea), pp. 2090–2095, May 2001.
  • [6] H. Arai, K. Tanie, and N. Shiroma, “Nonholonomic control of a three-DOF planar underactuated manipulator,” IEEE Transactions on Robotics and Automation, vol. 14, pp. 681–695, Oct. 1998.
  • [7] T. Suzuki, W. Miyoshi, and Y. Nakamura, “Control of 2R underactuated manipulator with friction,” in Proc. IEEE Conference on Decision and Control (CDC 1998), (Tampa, USA), pp. 2007 – 2012, Dec. 1998.
  • [8] A. Sorensen and A. S. Shiriaev, “Friction compensation in the furuta pendulum for stabilizing rotational modes,” in Proc. IEEE Conference on Decision and Control (CDC 2001), (Orlando, USA), pp. 3772 – 3777, Dec. 2001.
  • [9] M. Li and B. Ma, “Control of underactuated manipulators with uncertain static friction,” in Chinese Control and Decision Conference (2010 CCDC), (Xuzhou, China), pp. 676 – 679, May 2010.
  • [10] A. Ratajczak, “Układy robotyczne z pasywnym stopniem swobody,” Master’s thesis, Politechnika Wrocławska, Wrocław, Polska, 2007.
  • [11] K. Tchoń and J. Jakubiak, “Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms,” Int. J. Contr., vol. 76, no. 14, pp. 1387–1419, 2003.
  • [12] A. Ratajczak and K. Tchon, “Control of underactuated robotic manipulators: an endogenous configuration space approach,” in Proc. IEEE International Conference on Methods and Models in Automation and Robotics (MMAR 2007), (Szczecin, Polska), pp. 985 – 990, Aug. 2007.
  • [13] M. Janiak, Jakobianowe algorytmy kinematyki odwrotnej manipulatorów mobilnych z ograniczeniami na sterowanie, stan i zachowanie. PhD thesis, Politechnika Wrocławska, Wrocław, Polska, 2009.
  • [14] S. Jung and J. T. Wen, “Nonlinear model predictive control for the swing–up of a rotary inverted pendulum,” Trans. ASME, vol. 126, pp. 666–673, 2004.
  • [15] A. Ratajczak and M. Janiak, “Motion planning of an underactuated manipulators with state space constraints,” Scientific Papers of Warsaw University of Technology, 175), vol. 175, no. 2, pp. 495–504, 2010. in Polish.
  • [16] M. Galicki, “Inverse kinematics solution to mobile manipulators,” Int. J. Robotics Res., vol. 22, no. 12, pp. 1041–1064, 2003.
  • [17]F. Algöwer, R. Findeisen, Z. Nagy, M. Diehl, Georg, G. Bock, J. Schl, and O. X, “Efficient nonlinear model predictive control for large scale constrained systems,” in Proc. 6th Int. MMAR conference, (Miedzyzdroje), pp. 43–52, 2000.
  • [18] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods for nonlinear mpc and moving horizon estimation,” in Nonlinear Model Predictive Control (L. Magni, D. M. Raimando, and F. Algöwer, eds.), pp. 419–432, Berlin: Springer-Verlag, 2009.
  • [19] M. Janiak and K. Tchon, “Constrained robot motion panning: Imbalanced jacobian algorithm vs. optimal control approach,” in Proc. 15th Int. MMAR conference, (Miedzyzdroje), pp. 25–30, 2010.
  • [20] M. Janiak and K. Tchon, “Towards constrained motion planning of mobile manipulators,” in IEEE Int. Conf. Robot. Automat., (Anchorage, Alaska), pp. 4990– 4995, 2010.
  • [21] M. W. Spong, “Partial feedback linearization of underactuated mechanical systems,” in Proc. IEEE/RSJ Intelligent Robots and Systems (IR0S 1994), (Munich, Germany), pp. 314–321, Sept. 1994.
  • [22] C. Chen and O. L. Mangasarian, “Smoothing methods for convex inequalities and linear complementarity problems,” Mathematical Programming, vol. 71, pp. 51–69, 1995.
  • [23] K. S. Narendra and A. A. Annaswamy, Stable Adaptive Systems. Englewood Cliffs, New Jersey: Prentice Hal, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0006-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.