Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Proportional - Integral - Derivative control schemes continue to provide the simplest and effective solutions to most of the control engineering applications today. How ever PID controller are poorly tuned in practice with most of the tuning done manually which is difficult and time consuming. This article comes up with a hybrid approach involving Genetic Algorithm (GA), Evolutionary Pro gramming (EP), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). The proposed hybrid algorithm is used to tune the PID parameters and its per formance has been compared with the conventional me thods like Ziegler Nichols and Cohen Coon method. The results obtained reflect that use of heuristic algorithm based controller improves the performance of process in terms of time domain specifications, set point tracking, and regulatory changes and also provides an optimum stability. Speed control of DC motor process is used to assess the efficacy of the heuristic algorithm methodology
Rocznik
Tom
Strony
42--48
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
- Tamilnadu Newsprint and Papers Ltd, Tamilnadu, India. Research Scholar Karpagam University., nagarajice@gmail.com
Bibliografia
- [1] Ian Griffin, Jennifer Bruton “On-Line PID controller tuning using genetic algorithm”. Available at: www.eeng.dcu.ie/~brutonj/Reports/IGriffin_MEng_03.pdf
- [2] M.B.B. Sharifian, R. Rahnavard, H. Delavari “Velocity Control of DC Motor Based Intelligent methods and Optimal Integral State FeedbackController”, International Journal of Computer Theory and Engineering, vol. 1, no. 1,April 2009.
- [3] N. Thomas, P. Poongodi “Position Control of DC Motor Using Genetic Algorithm Based PID Controller”. In: Proceedings of the World Congress on Engineering 2009, 1st -3rd July 2009, London, UK, vol. II.
- [4] K.J. Astrom, T. Hagglund, “ Automatic tuning of simple regulators with specification on phase and amplitude margins”, Automatica,vol. 20, 1984, pp. 645- 651.
- [5] A.A. Khan, N. Rapal “Fuzzy PID controller: design, tuning and comparison with conventional PID controller”. In: IEEE International Conference on Engineering of Intelligent Systems, 2006, pp. 1-6, DOI 10.1109/ ICEIS.2006.1703213.
- [6] S. Saha, “Performance Comparison of Pid base Position control system with FLC based position control system”, TIG Research Journal, vol. 1, no. 2, Sept. 2008.
- [7] J. Lieslehto, “PID controller tuning using Evolutionary programming”. In: American Control Conference, VA, USA, 25 -27 June 2001.
- [8] M. Nasri, H. Nezamabadi-pour,M. Maghfoori, “APSOBased Optimum Design of PID Controller for a Linear Brushless DC Motor”, World Academy of Science, Engi neering and Technology, no. 26, 2007.
- [9] B. Nagaraj, S. Subha, B. Rampriya, “Tuning Algorithms for PID Controller Using Soft Computing Techniques”, IJCSNS International Journal of Computer Science and Network Security, vol. 8, no. 4,April 2008.
- [10] H.S. Hwang, J.N. Choi,W.H. Lee, J.K. Kim,“A Tuning Algorithm for The PID Controller Utilizing Fuzzy Theory”, International Joint Conference on Neural Net works, vol. 4, 1999, pp. 2210-2215.
- [11] Jan Jantzen, „Tuning of fuzzy PID controllers”. Denmark.Tech. Report no. 98-H 871(fpid), 30. Sept. 1998, pp. 1-22.
- [12] Kiam Heong Ang, Gregory Chong, “PID Control System Analysis, Design, and Technology”, IEEE Transactions on Control Systems Technology, vol. 13, no. 4, July 2005, pp. 559-576.
- [13] I. Chiha, P. Borne, “Multi-Objective Ant Colony Optimization to tuning PID Controller”. In: Proceedings of the International Journal of Engineering, vol. III, issue no. 2, March 2010.
- [14] G. Dicaro, M.Dorigo, “Ant colonies for adaptive routing in packet switched communications network”. In: A.E. Eiben, T. Back, M. Schoenauer, a H-P. Schwefel, ed., Proceedings of PPSN-V 5 international conference on parallel problem solving from nature, Lecture notes in csc, vol. 1498, Springer Verlag: Berlin, 1998, pp. 673-682.
- [15] G. Zhou, J.D. Birdwell, “Fuzzy logic- based PID autotuner design using simulated annealing”. In: Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design, 7th -9th March, 1994, pp. 67-72.
- [16] H. Ying-Tung, C. Cheng-Long, C. Cheng-Chih, “Antcolony optimization for designing of PID controllers”, IEEE International Symposium on Computer Aided Control Systems Design, Taipei,Taiwan, 24th September, 2004.
- [17] B. Nagaraj, N. Murugananth, “A comparative approach approach of soft computing methodologies for industrial process tuning”, KYTO Journal Engineering Research, vol. II, Dec 2009.
- [18] N. Pillay, “Aparticle swarm optimization”. Master Thesis Dept. of Electronics Engineering atDURBANUniv. of Tech., 2009.
- [19] E. Grassi, K. Taskatis, “PID controller tuning by frequency loop shaping: Application to diffusion furnace temp. Control”, IEEE Transaction on Control System Tech., vol. VIII, no. 5, Sept. 2000.
- [20] A. Karimi, D. Gracia, R. Longchamp, “PID Controller Tuning using Bode's Integrals”, IEEE transactions on Control System Tech., vol. XI, no. 6, Nov. 2003.
- [21] T.-H. Kim, I. Maruta, T. Sugia, “Particle Swarm Optimization based Robust PID Controller tuning”, IEEE Conference on Decision & Control, 12th 14th Dec, 2007 NewOrleans, LA, USA, pp. 200-205.
- [22] N. Pillay, P. Govender, ”Aparticle Swarm Optimization Approach for model independent tuning of PID control loop”, IEEE African 2007, IEEE catalog: 04CH37590C, ISBN: 0-7803-8606.
- [23] K. Ramkumar, S. Sharma, “Real Time Approach of Ant Colony Optimization”, International Journal of Computer Application, vol. 3, no. 8, June 2010, pp. 34-46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0006-0005