PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wiebe function parameter determination for mass fraction burn calculation in an ETHANOL-GASOLINE fuelled SI engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Mass Fraction Burn (MFB) and Heat Release Rate (HRR) reflect the amount of fuel burned and the rate of burning throughout the combustion process in an internal combustion engine. These parameters play a crucial role in research and development endeavours focused on engine efficiency, emissions, and overall operating performance. Analytically in a Spark-Ignition (SI) engine, these parameters are often modelled with the Wiebe function, a well known mass fraction burn formulation, which is a function of "a" (efficiency parameter), "m" (form factor), crank angle, and the duration of combustion. This function is a simple but powerful correlation model that is well suited for zero and one dimensional engine cycle simulations. In this work, the Wiebe function parameters are determined over a range of fuel compositions and compression ratios by fitting the Wiebe function curve to the experimentally obtained MFB data from a single-zone HRR analysis. The Wiebe function parameters are determined using a curve fitting model by finding the minimum of a scalar function of several variables. This functionality has been built into the single-zone mass fraction burned model. Experiments with five ethanol-gasoline fuel blends: E0 (gasoline), E20, E40, E60, and E84 were conducted on a SI Cooperative Fuels Research (CFR) engine while holding a constant load of 330 kPa Net Indicated Mean Effective Pressure (Net IMEP). There were five methods introduced to fit the Wiebe function parameters, which utilized a combination of least square method and direct algebraic solution. This paper details the process used to determine the Wiebe function parameters, and compare the results obtained using these methods for the ethanol-gasoline mixture concentrations.
Twórcy
autor
autor
autor
autor
autor
  • Michigan Technological University Mechanical Engineering-Engineering Mechanics 1400 Townsend Drive, Houghton, Michigan, USA 499311295 tel.: +1 906 4872551, fax: +1 906 4872822, yyeliana@mtu.edu
Bibliografia
  • [1] Rassweiler, G. M., Withrow, L., Motion Pictures of Engine Flames Correlated with Pressure Cards, SAE Transactions, Vol. 38, pp. 185-204, 1938.
  • [2] Heywood, J. B., Higgins, J. M., Watts, P. A., Tabaczynski, R. J., Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions, SAE 790291, 1979.
  • [3] Gatowski, J. A., Balles, E. N., Chun, K. M., Nelson, F. E., Ekchian, J. A., Heywood, J. B., Heat Release Analysis of Engine Pressure Data, SAE 841359, 1984.
  • [4] Chun, K. M., Heywood, J. B., Estimating Heat-Release and Mass-of-Mixture Burned from Spark-Ignition Engine Pressure Data, Combustion Science and Technology, Vol. 54, pp. 133-143, 1987.
  • [5] Klein, M., Eriksson, L., A Specific Heat Ratio Model for Single-Zone Heat Release Models, SAE TRANSACTIONS, Vol. 113, pp. 956, 2004.
  • [6] Cheung, H. M., Heywood, J. B., Evaluation of a One-Zone Burn-Rate Analysis Procedure Using Production SI Engine Pressure Data, 1993.
  • [7] Yeliana, Y., Cooney, C., Worm, J., Naber, J., Calculation of Mass Fraction Burn Rates of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models, SAE 2008-01-0320,2008.
  • [8] Heywood, J. B., Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
  • [9] Naber, J. D., Bradley, E. K., Szpytman, J. E., Target-Based Rapid Prototyping Control System for Engine Research, SAE TRANSACTIONS, Vol. 115, pp. 395, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ8-0003-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.