PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical diagnostics in a spark ignition engine for two-wheel vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different optical techniques were applied to describe the thermal and chemical processes that occur in a SI small engine from the ported fuel injection and in-cylinder mixture formation to the combustion process and the exhaust emission. In PFI SI engines, the atomized fuel is sprayed towards the intake valves, where it may evaporate, puddle or rebound. Furthermore, a portion of the fuel may flow directly into the cylinder or impinge upon the port walls. These phenomena occur in varying degrees and depend upon the engine design, injector location and engine operation. Potentially the fuel can enter the cylinder in a poorly atomized state, leading to an increased unburned hydrocarbon emissions. This is particularly true during cold operation, when evaporation is low. In the small-motorcycle and scooter engines the fuel injection occurs in smaller intake manifold than light-duty vehicle engines, increasing the criticism of the fuel-wall interaction. The experimental investigations were performed in a single cylinder engine constituted by an elongated optically accessible piston and equipped with the head and injection system of a reference 4-stroke engine for small vehicles. High spatial resolution imaging was used to characterize the fuel injection phase. The cycle resolved visualization was performed to follow the flame propagation from the intake spark ignition to the exhaust phase. Natural emission spectroscopy measurements were applied in the ultraviolet-visible wavelength range to identify the chemical species that are markers of the combustion process and to follow the formation of pollutants.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Han, X., Naeher, L. P., A review of traffic-related air pollution exposure assessment s the developing world, Environmental International, Vol. 32, pp. 106-120, 2006.
  • [2] Singh, S. K., Future mobility in India: implications for energy demand and CO2 emission, Transport Policy, Vol. 13, pp. 398-412, 2006.
  • [3] Vasic, A.-M., Weilenmann, M., Comparison of real-world emissions from two wheelers and passenger cars, Environmental Science and Technology, Vol. 40, pp. 149-154, 2006.
  • [4] Ntziachristos, L., Mamakos, A., Samaras, Z., Xanthopoulos, A., Iakovou, E., Emission control options for power two wheelers in Europe, Atmospheric Environment, Vol. 40, pp. 4547-4561, 2006.
  • [5] Maly, R. R., State of the art and future needs in S.I. engine combustion, Proceedings of the Combustion Institute, Pittsburgh, USA, Vol. 25 (1), pp. 111-124, 1994.
  • [6] Heel, B., Maly, R. R., Weller, H. G., Gosman, A. D., Validation of S.I. Combustion Model Over Range of Speed, Load, Equivalence Ratio and Spark Timing, Proceedings of The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 98), pp. 255-260, Tokyo, Japan 1998.
  • [7] Drake, M. C., Haworth, D. C., Advanced gasoline engine development using optical diagnostics and numerical modeling, Proceedings of the Combustion Institute, Vol. 31 (1), pp. 99-124, 2007.
  • [8] http://www.dieselnet.com/standards/
  • [9] Costanzo, V. S., Heywood, J. B., Mixture Preparation Mechanisms in a Port Fuel Injected Engine, SAE Paper No. 2005-01-2080, 2005.
  • [10] Gold, M. R., Arcoumanis, C., Whitelaw, J. H., Gaade, J., Wallace, S., Mixture Preparation Strategies in an Optical Four-Valve Port-Injected Gasoline Engine, Int. J. of Engine Research, Vol. 1 (1), pp. 41-56, 2000.
  • [11] Meyer, R., Heywood, J. B., Liquid Fuel Transport Mechanisms into the Cylinder of a Firing Port-Injected SI Engine During Start Up, SAE Paper No. 970865, 1997.
  • [12] Merola, S. S., Sementa, P., Tornatore, C., Vaglieco, B. M., Effect of Fuel Film Deposition on Combustion Process in PFI SI engine, Journal of KONES Powertrain and Transport, Vol. 14, No. 3, pp. 395-402, 2007.
  • [13] Witze, P. O., Green, R. M., LIF and Flame-Emission Imaging of Liquid Fuel Films and Pool Fires in an SI Engine During a Simulated Cold Start, SAE Paper No. 970866, 1997.
  • [14] Alkemade, C. T. J., Herrmann, R., Fundamentals of Analytical Flame Spectroscopy, Hilger eds., Bristol, UK 1979.
  • [15] Zizak, G. Flame Emission Spectroscopy: Fundamentals and Applications, Lecture given at the ICS Training Course on Laser Diagnostics of Combustion Processes, NILES, University of Cairo, Egypt 2000.
  • [16] Dieke, G. H., Crosswhite, H. M., The ultraviolet bands of OH, Journal of Quantum Spectrosc. Radiat. Transfer, Vol. 2, pp. 97-199, 1962.
  • [17] Gaydon, A. G., Wolfhard, H. G., Mechanism of formation of CH, C2, OH and HCO radicals flames, Proceeding of Symposium (International) on Combustion, Vol. 4 (1), pp. 211-218, 1953.
  • [18] Higgins, B., McQuay, M. Q., Lacas, F., Rolon, J. C., Darabiha, N., Candel, S., Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames, Fuel, Vol. 80 (1), pp. 67-74, 2001.
  • [19] Higgins, B., McQuay, M. Q., Lacas, F., Candel, S., An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames, Fuel, Vol. 80 (11), pp. 1583-1591, 2001.
  • [20] Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, T., Kerr, J. A., Pilling, M. J., Troe, J., Walker, R. W., Warnatz, J., Evaluated Kinetic Data for Combustion Modelling, J. Phys. Chem. Ref. Data, Vol. 21 (3), pp. 411-734, 1992.
  • [21] Bessler, W. G., Schulz, C., Lee, T., Jeffries, J. B., Hanson, R. K., Carbon dioxide UV laserinduced fluorescence in high-pressure flames, Chemical Physics Letters, Vol. 375 (3-4), pp. 344-349, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0017-0083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.