PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanoparticles (NPs) defined as particles having at least one dimension below 100 nm have been applied in the last decade in industry and medicine. Recently, there is an increased concern about the biohazard aspect of the presence of NP in consumer goods and in the environment. Silver NP (Ag NP) cause oxidative stress in mammalian cells in result of generation of reactive oxygen species (ROS). This results in genotoxicity and mutagenicity, disturbed mitochondrial respiration, slowed proliferation and cell death. Using the alkaline comet assay, we examined the effect of combined treatment with Ag NP 20 nm or 200 nm and X-rays (2 Gy) in HepG2 cells. In addition, combined treatment with X-rays and titanium dioxide NP (TiO2 NP) 21 nm was also studied. No effect of NP pre-treatment on X-ray induced initial deoxyribonucleic acid (DNA) damage levels was observed for all three NP. In contrast, Ag NP treatment preceding exposure to X-rays caused a marked decrease in the rate of single strand break rejoining. The effect was particularly strong for Ag NP 20 nm. TiO2 NP pre-treatment had no effect on DNA repair.
Czasopismo
Rocznik
Strony
29--33
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
autor
autor
autor
autor
  • Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, m.kruszewski@ichtj.waw.pl
Bibliografia
  • 1. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269
  • 2. Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318
  • 3. AshaRani PV, Hande MP, Valiyaveettil S (2009) Antiproliferative activity of silver nanoparticles. BMC Cell Biology 10:65, doi:10.1186/1471-2121-10-65
  • 4. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290
  • 5. Ayres JG, Borm P, Cassee FR et al. (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential – a workshop report and consensus statement. Inhal Toxicol 20:75–99
  • 6. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910
  • 7. Bennardo N, Gunn A, Cheng A, Hasty P, Stark JM (2009) Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS Genet 5:e1000683
  • 8. Blaisdell JO, Harrison L, Wallace SS (2001) Base excision repair processing of radiation-induced clustered DNA lesions. Radiat Prot Dosim 97:25–31
  • 9. Bump EA, Brown JM (1990) Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther 47:117–136
  • 10. Carlson C, Hussain SM, Schrand AM et al. (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619
  • 11. Chithrani DB, Jelveh S, Jalali F et al. (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728
  • 12. Dahm-Daphi J, Sass C, Alberti W (2000) Comparison of biological effects of DNA damage induced by ionizing radiation and hydrogen peroxide in CHO cells. Int J Radiat Biol 76:67–75
  • 13. Gafter-Gvili A, Herman M, Ori Y et al. (2010) Inhibition of mitochondrial function reduces DNA repair in human mononuclear cells. Leuk Res, doi:10.1016/j.leukres.2010.06.009
  • 14. Harrison L, Hatahet Z, Wallace SS (1999) In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. J Mol Biol 290:667–684
  • 15. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401
  • 16. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle- mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150
  • 17. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414
  • 18. Juzenas P, Chen W, Sun YP et al. (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60:1600–1614
  • 19. Kariya S, Sawada K, Kobayashi T et al. (2009) Combination treatment of hydrogen peroxide and X-rays induces apoptosis in human prostate cancer PC-3 cells. Int J Radiat Oncol Biol Phys 75:449–454
  • 20. Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051
  • 21. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254
  • 22. Kim S, Choi JE, Choi J et al. (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitro 23:1076–1084
  • 23. Korystov Y (1992) Contributions of the direct and indirect effects of ionizing radiation to reproductive cell death. Radiat Res 129:228–234
  • 24. Kruszewski M, Wojewódzka M, Iwaneńko T, Collins AR, Szumiel I (1998) Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. II. Base damage. Mutation Res 416:37–57
  • 25. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163
  • 26. Lucignani G (2009) Nanoparticles for concurrent multimodality imaging and therapy: the dawn of new theragnostic synergies. Eur J Nucl Med Mol Imaging 36:869–874
  • 27. Morales A, Miranda M, Sanchez-Reyes A, Biete A, Fernandez-Checa JC (1998) Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. Int J Radiat Oncol Biol Phys 42:191–203
  • 28. Ogawa Y, Kobayashi T, Nishioka A et al. (2004) Reactive oxygen species-producing site in radiation-induced apoptosis of human peripheral T cells: involvement of lysosomal membrane destabilization. Int J Mol Med 13:69–73
  • 29. Ogawa Y, Takahashi T, Kobayashi T et al. (2003) Apoptotic-resistance of the human osteosarcoma cell line HS-Os-1 to irradiation is converted to apoptotic-susceptibility by hydrogen peroxide: a potent role of hydrogen peroxide as a new radiosensitizer. Int J Mol Med 12:845–850
  • 30. Rahman MF, Wang J, Patterson TA et al. (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21
  • 31. Revesz L, Edgren M (1984) Glutathione-dependent yield and repair of single-strand DNA breaks in irradiated cells. Br J Cancer Suppl 6:55–60
  • 32. Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A (2009) The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J Radiat Res (Tokyo) 50:27–36
  • 33. Singh N, Manshian B, Jenkins GJ et al. (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914
  • 34. Wallace SS (2002) Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med 33:1–14
  • 35. Wojewódzka M, Kruszewski M, Iwaneńko T, Collins AR, Szumiel I (1998) Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. I. Strand breakage. Mutat Res 416:21–35
  • 36. Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150
  • 37. Yang N, Chaudhry MA, Wallace SS (2006) Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma-irradiated human cells. DNA Repair (Amst) 5:43–51
  • 38. Yang N, Galick H, Wallace SS (2004) Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks. DNA Repair (Amst) 3:1323–1334
  • 39. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78
  • 40. Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561
  • 41.Zhang XD, Guo ML, Wu HY et al. (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomed 4:165–173
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0016-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.