Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Targetry of natSn-target on Cu substrate was investigated for the production of 117,118m,119,120m,122Sb. The electrodeposition experiments were carried out using potassium stannate trihydrate and potassium hydroxide. The optimum conditions of the electrodeposition of tin were as follows: 40 g/L natSn, temperature 75°C and current density (dc) used throughout of 50 mA/cm2. The deposited target was irradiated at 160 ěA current and 16 MeV proton beam (10 min). Separation of no-carrier-added (nca) 117,118m,119,120m,122Sb from the irradiated natSn target hydrochloric solution was investigated using silica-gel column chromatography.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
9--15
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
autor
autor
autor
- Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran, Tel.: +98 261 443 6395, Fax: +98 261 446 4055, msadeghi@nrcam.org
Bibliografia
- 1. Baluev AV, Mityakhina VS, Krasnikov LV, Galkin BY, Besnosyuk VI (2003) Recovery of antimony-125 from tin-124 irradiated by neutrons. Czech J Phys 53:A417.A423
- 2. Behr TM, Behe M, Lohr M et al. (2000) Therapeutic advantages of Auger electron- over beta-emitting radiometals or radioiodine when conjugated to internalizing antibodies. Eur J Nucl Med 27:753.765
- 3. Dmitriev PP, Konstantinov IO (1993) 117Sb, 118mSb, 120mSb, 122Sb and 124Sb yields in the reactions Sn(p,xn). Atomic Energy 75:354.358
- 4. Hermanne A, Tarkanyi F, Ditroi F et al. (2006) Experimental study of the excitation functions of proton induced reactions on natSn up to 65 MeV. Nucl Instrum Methods B 247:180.191
- 5. Hirsch S (1993) Tin-lead, lead, and tin plating. Metal finishing guidebook and dictionary. 91, p 269
- 6. Johnson CH, Bair JK, Jones CM, Penny SK, Smith SW (1977) P-wave size resonances observed by (p,n) reaction for 2.6 MeV to 7 MeV protons incident on isotopes of Sn. Phys Rev C 15:196.216
- 7. Kassis AI (2003) Cancer therapy with Auger electrons: are we almost there? J Nucl Med 44:1479.1481
- 8. Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46:S4.S12
- 9. Khalid M, Mushtaq A, Iqbal MZ (1999) Separation of Sb-125 from neutron irradiated tin using silica gel. Radiochim Acta 84:213.214
- 10. Khalid N, Ahmad S, Toheed A, Ahmed J (2000) Potential of rice husks for antimony removal. Appl Radiat Isot 52:31.38
- 11. Khandaker MU, Kim K, Kim KS et al. (2009) Excitation functions of the proton-induced nuclear reactions on natSn up to 40 MeV. Nucl Instrum Methods B 267:23.31
- 12. Killmeyer J (1994) Tin plating. ASM Handbook. Surface engineering. American Society for Metals, Vol. 5, p 239
- 13. Koning AJ, Hilaire S, Duijvestijn M (2009) TALYS-1.2 A nuclear reaction program. User manual. Nuclear Research and Consultancy Group (NRCG) 1755, Netherlands, www.talys.edu/
- 14. Kormali SM, Swindle DL, Schweikert EA (1976) Charged particle activation of medium elements. II. Proton excitation functions. J Radioanal Chem 31:437.450
- 15. Lintschinger J, Michalke B, Schulte-Hostede S, Schramel P (1998) Studies on speciation of antimony in soil contaminated by industrial activity. Int J Environ Anal Chem 72:11.25
- 16. Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159.165
- 17. Lowenheim FA (1974) Modern electroplating, 3rd ed. Wiley-Interscience, New York
- 18. Marczenko Z (1976) Spectrophotometric determination of elements, 4th ed. Wiley, New York, p 601
- 19. Maruyama Y, Yamaashi Y (1988) A simple method for the separation of 125Sb from neutron-irradiated tin. Int J Appl Radiat Isot 39:1079.1080
- 20. Mirza MY, Sani AR, Hussain J, Jawaid M (1974) Separation of Sb-125 from neutron-irradiated tin. Radiochim Acta 21:155.156
- 21. Nakamaru Y, Tagami K, Uchida S (2006) Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior. Environ Pollut 141:321.326
- 22. Neves M, Kling A, Oliveira A (2005) Radionuclides used for therapy and suggestion for new candidates. J Radioanal Nucl Chem 266:377.384
- 23. O�fDonnell RT (2006) Nuclear localizing sequences: an innovative way to improve targeted radiotherapy. J Nucl Med 47:738.739
- 24. Price JW (1983) Tin and tin-alloy plating. Electrochemical publication, Ayr, Scotland
- 25. Sadeghi M, Amiri M, Rowshanfarzad P, Gholamzadeh Z, Ensaf M (2008) Thick zinc electrodepositionon copper substrate for cyclotron production of 64Cu. Nukleonika 53;4:155.160
- 26. Sadeghi M, Enferadi M, Nadi H (2010) Study of the cyclotron production of 172Lu: an excellent radiotracer. J Radioanal Nucl Chem 286:259.263
- 27. Sadeghi M, Kakavand T, Rajabifar S, Mokhtari L, Rahimi-Nezhad A (2009) Cyclotron production of 68Ga via proton-induced reaction on 68Zn target. Nukleonika 54;1:25.28
- 28. Thisgaard H (2008) Accelerator-based production of Auger- electron-emitting isotopes for radionuclide therapy. PhD Thesis, Denmark, Riso-PhD-42(EN)
- 29. Thisgaard H, Jensen M (2008) 119Sb . a potent Auger emitter for targeted radionuclide therapy. Med Phys 35:3839.3846
- 30. Thisgaard H, Jensen M (2008) Production of the Auger emitter 119Sb for targeted radionuclide therapy using a small PET-cyclotron. Appl Radiat Isot 67:34.38
- 31. Thisgaard H, Jensen M, Elema DR (2011) Medium to large scale radioisotope production for targeted radiotherapy using a small PET cyclotron. Appl Radiat Isot 69:1.7
- 32. Ziegler JF (2004) SRIM-2003. Nucl Instrum Methods B 219/220:1027.1036
- 33. Ziegler JF, Biersack JP, Littmark U (2003) SRIM-2003 code. The stopping and range of ions in solids. Pergamon, New York, http://www.srim/org.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0016-0070