PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Defect Structure and Transport Properties of Nonstoichiometric Metal Sulphides

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper is an attempt to discuss the results of studies on the defect structure and transport properties of nonstoichiometric metal sulphides, obtained in the recent decade. These physicochemical properties of metal sulphides remain still less known than those of corresponding oxides. Such situation results mainly from much greater experimental difficulties in studying the high-temperature heterogeneous reactions in sulphur-containing atmospheres. Sulphur vapours are, namely, extremely aggressive at high temperatures and as a consequence, all standard thermogravimetric and other equipments commonly used in oxidation studies are not applicable under such conditions. This experimental restriction has been over came recently by the development of novel microthermogravimetric assemblies, enabling the determination of the kinetics of mass changes of a given sample with the accuracy of about two orders of magnitude higher than in all other thermogravimetric equipments. In addition, these assemblies make it possible to study the concentration and the mobility of point defects in metal sulphides showing not only large, but also very low deviation from stoichiometry. As a consequence, important in formation on physicochemical properties of metal sulphides can be obtained in rather simple way by two microthermogravimetric techniques, i.e. re-equilibration and two-stage kinetic methods, with the accuracy difficult to attain using other, much more complicated and time consuming methods. It has been shown that the results obtained using both these methods may be useful in studying transport properties of nonstoichiometric metal sulphides and thereby in designing novel high temperature alloys, better resistant to sulphide corrosion.
Rocznik
Strony
1423--1436
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Solid State Chemistry, al. A. Mickiewicza 30, 30-059 Kraków, Poland, grzesik@agh.edu.pl
Bibliografia
  • 1. Kofstad P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, J. Wiley, Interscience, New York, 1972.
  • 2. Mrowec S., Defect and Diffusion in Solids, Elsevier, Amsterdam, 1978.
  • 3. Kofstad P., High Temperature Corrosion, Elsevier, Amsterdam, 1988.
  • 4. Mrowec S., An Introduction to the Theory of Metal Oxidation, National Bureau of Standards and National Science Foundation, Washington D. C, 1982.
  • 5. Mrowec S. and Przybylski K, High Temp. Mater. Processes, 1, 6 (1984).
  • 6. Grzesik Z. and Przybylski K, Sulfidation of Metallic Materials, in: Developments in High-temperature Corrosion and Protection of Metals, Eds. Wei Gao and Zhengwei Li, Woodhead Publishing Limited, Cambridge, England, 2008, p. 599.
  • 7. Mrowec S. and Janowski J., Similarities and Differences in Defect Dependent Properties of Transition Metal Sulphides and Oxides, in: Selected Topics in High Temperature Chemistry, Defect Chemistry of Solids, O. Johanesen and A.G. Andersen. Eds., Elsevier, Amsterdam, 1989, p. 55.
  • 8. Grzesik Z., Mrowec S., Walec T. and Dabek J., J. Therm. Anal. Calorim., 59, 985 (2000).
  • 9. Ahuja R., Eriksson O. and Johansson E., Phil. Magaz., B78, 475 (1998). 10. Fujimori A., Mamiya K., Mizokawa T., Miyadai T, Sekiguchi T., Takahashi H, Mori N. and Suga S., Phys. Rev., B54, 16329 (1996).
  • 11. Hu Y., Zheng Z., Jia H.M., Tang YW. and Zhang L.Z., J. Phys. Chem., C112, 13037 (2008).
  • 12. AltermattP.P.,KiesewetterT.,EllmerK. and Tributsch H.,Sol Energy Mater. Sol. Cells,71, 181 (2002).
  • 13. Yan J.M., Huang H.Z., Zhang J., Liu ZJ. and Yang Y, J. Power Sources, 146, 264 (2005).
  • 14. Feng X., He X.M., Pu W.H., Wan CR. and Jiang C.Y., Prog. Chem., 20, 396 (2008).
  • 15. Masset P.J. and Guidotti R.A., J. Power Sources, 177, 595 (2008).
  • 16. Feng X., He X.M., Pu W.H., Jiang C.Y. and Wan CR, Ionics, 13, 375 (2007).
  • 17. Gao J.H., Liang G.L., Zhang B., Kuang Y, Zhang X.X. and Xu B., J. Amer. Chem. Soc, 129, 1428 (2007) .
  • 18. Chakraborty I., Malik P.K. and Moulik S.P., J. Nanoparticle Res., 8, 889 (2006).
  • 19. Barnard A.S. and Russo S.P., J. Phys. Chem., Oil, 11742 (2007).
  • 20. Zhang H, Yang G.Q., Zhang R.G., Wang B.Y and Wei L., J. Inorg. Mater. 20, 1337 (2005).
  • 21. Zhu L., Susac D., Tea M., Wong K.C., Wong P.C., Parsons R.R. and Bizzotto D., J. Catal, 258, 235
  • (2008) .
  • 22. Keller N, Pham-Huu C, Estornes C. and Ledoux M.J., App. Catal. A: General, 234, 191 (2002).
  • 23. Ledoux M.J., Pham-Huu C.) KellerN, Nougayrede J.B., Savin-Poncet S. and Bousquet J., Catal. Today, 61, 157(2000).
  • 24. Susac D., Zhu L., Teo M., Sode A., Wong K.C, Wong P.C., Parsons R.R., Bizzotto D., Mitchell K.A.R. and Campbell S.A., J. Phys. Chem., Oil, 18715 (2002).
  • 25. Mrowec S. and Hashimoto K., J. Mater. Sei., 30, 4801 (1995).
  • 26. Wagner J.B., Chemical Diffusion inNonstoichiometric Compounds, in: Mass Transport inNonmetallic Solids, Proc. Brit. Ceram. Soc, 19, 29 (1971).
  • 27. Rosenburg J., J. Electrochem Soc, 107, 795 (1960).
  • 28. Fryt E., Mrowec S. and Walec T., Oxid. Met., 7, 117 (1973).
  • 29. Kofstad P., J. Phys. Chem. Solids, 44, 879 (1983).
  • 30. Oberländer B., Kofstad P. and Kvernes I., Mat. Wiss. und Werkstofftechnik, 19, 190 (1988).
  • 31. Smith T, J. Electrochem. Soc, 112, 560 (1965).
  • 32. Grzesik Z. and Mrowec S., Solid State Ionics, 141, 493 (2001).
  • 33. Mrowec S., Grzesik Z. and Dabek J., High Temp. Mater. Proc, 21, 87 (2002).
  • 34. Danielewski M. and Mrowec S., Solid State Ionics, 17, 29 (1985).
  • 35. Danielewski M. and Mrowec S., Solid State Ionics, 17, 41 (1985).
  • 36. Danielewski M. and Mrowec S., Solid State Ionics, 17, 319 (1985).
  • 37. Rau H, J. Phys. Chem. Solids, 39, 3339 (1978).
  • 38. Mrowec S. and Grzesik Z., Solid State Phenomena, 72, 69 (2000).
  • 39. Grzesik Z., Solid State Ionics, 141, 295 (2001).
  • 40. Grzesik Z., Defect andDiff. Forum, 199, 1725 (2001).
  • 41. Grzesik Z., "On the chemical diffusion in Co4S3", in Proc. 15th International Corrosion Congress, no. 175, 22-27.09.2002, Granada, Spain.
  • 42. Grzesik Z. and Mrowec S., High Temp. Mater. Proc, 25, 209 (2006).
  • 43. Bruin H.J. and Murch G.E., Phil. Mag, 27, 1475 (1973).
  • 44. Murch G.E., Atomic Diffusion Theory, in: Highly Defected Solids, Trans. Tech, Switzerland, 1980.
  • 45. Rau H., J. Phys. Chem. Solids, 41, 765 (1980).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0015-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.