PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen Bonds in the 1:1 and 2:1 Complexes of 1-Methylquinolinium-3-carboxylate with Mineral Acids Studied by NMR, FTIR and Raman Spectra and DFT Calculations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 1:1 and 2:1 complexes of 1-methylquinolinium-3-carboxylate (benzotrigonelline), 3QB, with HCl, HBr, HNO3, HClO4 and HBF4 have been synthesized and their FTIR, Raman, 1H and 13C NMR spectra have been analyzed. The 1:1 complexes with HCl and HBr crystallize as monohydrates and water molecule is localized between the betaine and counter-ions (Cl– and Br–). In the complexes with HNO3, HClO4 and HBF4 the anions are connected with the protonated 3QB via O–HźźźX– hydrogen bonds. The 2:1 complexes with HCl, HBr, HNO3 and HClO4 crystallize with one water molecule while with HBF4 as an hydrous. Their FTIR spectra show a broad and intense absorption in the 1500–400 cm–1 region, typical of hydrogen bonds shorter than 2.5 A. The water molecule in the 2:1 complexes, except perchlorate, forms hydrogen bonds with anions. The influence of counter-ions on proton and carbon-13 chemical shifts is very small and comparable with the experimental error. The protonation of 3QB causes deshielding of all protons and most carbons, except C-3, C-9 and COO, which are shielded. The 2:1 complexes in D2O dissociate to the 1:1 complexes and 3QB. Five 1:1 (2–6) and six 2:1 (7–12) complexes have been analyzed by the B3LYP/6-31G(d,p) calculations in order to determine the influence of conformation of COOH groups on hydrogen bond and homoconjugation.
Rocznik
Strony
1061--1074
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60780 Poznań, Poland, szafran@amu.edu.pl
Bibliografia
  • 1. Cannon J.R, Edmonts J.S, Francesconi K.A, Raston C.L, Saunders J.B, Skelton B.W. and White A.H, Aust. J. Chem., 34, 787 (1981).
  • 2. Barczyński P, Katrusiak A, Koput J. and Szafran M, J. Mol. Struct., 889, 394 (2008).
  • 3. Szafran M, Dega-Szafran Z, Grundwald-Wyspiańska M, Barczyński P. and Pankowski M. J. Chem., 16, 1191 (2002).
  • 4. Szafran M, Koput J, Dega-Szafran Z, Katrusiak A, Pankowski M. and Stobiecka K., Chem. Phys., 289, 201 (2003).
  • 5. Frisch M.J., Trucks G.W, Schlegel H.B, Scuseria G.E., Robb M.A, Cheeseman J.R, Montgomery J.A, Jr., Vreven T, Kudin K.N, Burant J.C, Millam J.M, Iyengar S.S., Tomasi J., Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G.A., Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y., Kitao O, Nakai H, Kiene M, Li X, Knox J.E, Hratchian H.P., Cross J.B, Adamo C, Jaramillo J, Gomperts R, Stratmann R.E, Yazyev O, Aus¬tin A.J, Cammi R, Pomelli C, Ochterski J.W., Ayala P.Y., Morokuma K, Voth G.A., Salvador P., Dannenberg J.J, Zakrzewski V.G., Dapprich S, Daniels A.D., Strain M.C, Farkas O, Malick D.K., Rabuck A.D., Raghavachari R, Foresman J.B., Ortiz J. V, Cui Q, Baboul A.G., Clifford S, Cioslowski J, Stefanov B.B., Liu G, Liashenko A.A., Piskorz P., Romaromi I, Martin R.L., Fox D.J., Keith T, Al-Laham M.A, Peng C.Y., Nanayakkara A, Challacombe M, Gill P.M.W, Johnson B, Chen W, Wong M.W, Gonzalez C. and Pople J.A., Gussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
  • 6. Becke A.D., J. Chem. Phys., 98, 5648 (1993).
  • 7. Lee C, Yang W. and Parr R.G., Phys. Rev., B37, 785 (1988).
  • 8. Hehre W.J, Random L., Schleyer P.v.R and Pople J'.A., Ab Initio Molecular Orbital Theory, Wiley, New York, 1989.
  • 9. Barczyński P., Katrusiak A, Koput J, Dega-Szafran Z. and Szafran M, J. Mol. Struct., (2008), doi: 10.1016/j.molstruc. 2008.07.022.
  • 10. Szafran M, Katrusiak A. and Dega-Szafran Z, J. Mol. Struct., 827, 56 (2007).
  • 11. Hadżi D. and Bratos S, in: Schuster P., Zundel G. and Sandorfy C., (Eds.), The Hydrogen Bond, Recent Developments in Theory and Experiments, Vol. 2, North-Holland, Amsterdam, 1976, p. 565.
  • 12. Speakman J.C, Structure and Bonding, 12, 141 (1972).
  • 13. Novak A, Structure and Bonding, 18, 177 (1974).
  • 14. Emsley J, Chem. Soc. Revs., 9, 91 (1980).
  • 15. Bratos S, Ratajczak H. and Viot P., in: Dore J.C. and Teixeire J, (Eds.), Hydrogen-Bonded Liquid, Kluver Academic Publisher, Amsterdam (1991), p. 221-235.
  • 16. Zundel G, Advances in Chemical Physics, Vol. Ill, p. 1-217, Edited by I. Prigogine and S.A. Rice, J. Wiley & Sons, Inc., Chicago (2000).
  • 17. Szafran M., Kowalczyk I. and Barczyńki P., Israeli Chem., 39 253 (1999).
  • 18. (a) Schräder B. (Ed.), Infrared and Raman Spectroscopy, VCH Weinheim, 1995, p. 190; (b) McCreery R.L., Raman Spectroscopy for Chemical Analysis, Wiley-Interscience, New York, (2000).
  • 19. Maddams V.D. and Southon M.J., Spectrochim. Acta, 38A, 459 (1982).
  • 20. Talsky G, Derivative Spectrophotometry, VGR, Weinheim, 1994.
  • 21. Luck A.P, in: Schuster P, Zundel G. and Sandorfy C, (Eds.), The Hydrogen Bond, Recent Developments in Theory and Experiments, Vol. 2, North-Holland, Amsterdam, 1976, p. 527.
  • 22. Szafran M, Kowalczyk I. and Dega-Szafran Z., J. Mol. Struct., 651-653, 621 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0015-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.