PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonconventional Hydrogen Bonding and Vertical Electron Detachment in Anionic Complexes of Gold with DNA Bases: Few Essayistic Fragments

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work performs the computational Gedanken experiments on an ion photo-electron spectroscopy for the complexes [Au-DNA base]– established between the auride anion Au- and the DNA bases thanks to the nonconventional hydrogen bond where Au- casts as the nonconventional proton acceptor. The fascinating phenomenon of the proton acceptor character of Au- to form a variety of nonconventional hydrogen bonds with the DNA bases is computationally unveiled in the present work which also shed a light on the mechanism of the vertical electron detachments of [Au-DNA base]– and their further access of the ground electronic states of the neutral parent hood complexes [Au-DNA base].
Rocznik
Strony
917--931
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
Bibliografia
  • 1. Hadzi D. and Thompson H.W. (Eds.), Hydrogen Bonding, Pergamon Press, London 1959.
  • 2. Pimentel G.C. and McClellan A.L, The Hydrogen Bond Freeman, San Francisco 1960.
  • 3. Hamilton W.C. and Ibers J.A, Hydrogen Bonding in Solids, Benjamin, New York 1968.
  • 4. Vinogradov S.N. and Linell R.H, Hydrogen Bonding, Van Nostrand-Reinhold, New York 1971.
  • 5. Joesten M.D. and Schaad L.J., Hydrogen Bonding, Dekker, New York 1974.
  • 6. Schuster P., Zundel G. and Sandorfy C. (Eds.), The Hydrogen Bond. Recent Developments in Theory and Experiments, North-Holland, Amsterdam 1976.
  • 7. Schuster P., in: Pullman B. (Ed.), Intermolecular Interactions: From Diatomics to Biopolymers, Wiley, Chichester 1978, p. 363.
  • 8. Schuster P. (Guest Ed.), Top. Curr. Chem., 120, (1984).
  • 9. Jeffrey G.A. and Saenger W, Hydrogen Bonding in Biological Structures, Springer, Berlin 1991.
  • 10. Jeffrey G.A, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford 1997.
  • 11. Scheiner S, Hydrogen Bonding. A Theoretical Perspective, Oxford University Press, Oxford 1997.
  • 12. Hadźi D. (Ed.), Theoretical Treatment of Hydrogen Bonding, Wiley, New York 1997.
  • 13. Steiner T. and Desiraju G.R, Chem. Commun., 891 (1998).
  • 14. Desiraju G.R. and Steiner T, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford 1999.
  • 15. Steiner T, Angew. Chem. Int. Ed., 41,48 (2002).
  • 16. Karpfen A., Adv. Chem. Phys., 123, 469 (2002).
  • 17. Grabowski S. (Ed.), Hydrogen Bonding-New Insights, Vol. 3 of Challenges and Advances in Computational Chemistry and Physics, Leszczyński J. (Ed.), Springer, Dordrecht 2006.
  • 18. Crabtree R.H., Siegbahn P.E.M., Wisenstein O, Rheingold A.L. and Koetzle T.F, Acc. Chem. Res., 29, 348(1996).
  • 19. Brammer L, Zhao D, Ladipo F.T. andBraddock-Wilking l.,Acta Crystallogr. Sect. B, 51,632 (1995).
  • 20. Martin A, J. Chem. Ed., 76, 578 (1999).
  • 21. Epstein L.M. and Shubina E.S., Coord. Chem. Rev., 231, 165 (2002) and references therein.
  • 22. Brammer L, Dalton Trans., 3145 (2003) and references therein.
  • 23. Shubina E.S., Belkova N.V. and Epstein L.M, J. Organomet. Chem., 536, 17 (1997).
  • 24. Atwood J.L, Hamada F, Robinson K.D, Orr G.W. and Vincent R.L., Nature, 349, 683 (1991).
  • 25. Brammer L, McCann M.C, Bullock R.M, McMullan R.K. and Sherwood P., Organometallics, 11, 2339 (1992).
  • 26. Kazarian S.G., Hanley PA. and Poliakoff M, J. Am. Chem. Soc, 115, 9069 (1993).
  • 27. Cecconi F, Ghilardi C.A., Innocenti P, MealliC, Midollini S. andOrlandini A.,Inorg. Chem., 23,922 (1984).
  • 28. Albinati A, Anklin C.G., Ganazzoli F, Ruegg H. and Pregosin P.S, Inorg. Chem., 26, 503 (1987).
  • 29. Albinati A, Pregosin P.S. and Wombacher F, Inorg. Chem., 29, 1812 (1990).
  • 30. Casas J.M, Falvello L.R, Fornies J., Martin A. and Welch A.J, Inorg. Chem., 35, 6009 (1996).
  • 31. Albinati A, Lianza F, Pregosin P.S. and Muller B, Inorg. Chem., 33, 3522 (1994).
  • 32. Hambley T.W, Inorg. Chem., 37, 3767 (1998).
  • 33. Davies M.S., Fenton R.R., Hug F, Ling E.C.H, and Hambley T.W, Aust. J. Chem., 53, 451 (2000).
  • 34. Brammer L, Charnock J.M., Goggin P.L, Goodfellow R.J, Koetzle T.F. and Orpen A.G., J. Chem. Soc. Dalton Trans., 1789 (1991).
  • 35. Wieghardt W, Kupper H.J, Raabe E. and Kruger C, Angew. Chem., Int. Ed, 25, 1101 (1986).
  • 36. Orlova G. and Scheiner S, Organometallics, 17, 4362 (1998).
  • 37. Braga D, Grepioni F, Tedesco E, Biradha K. and Desiraju G.R., Organometallics, 16, 1846 (1997).
  • 38. Kryachko E.S. and Remade F, Chem. Phys. Lett, 404, 142 (2005).
  • 39. a) Kryachko E.S. and Remade F, in: Recent Advances in the Theory of Chemical and Physical Systems (J.-P. Julien, J. Maruani, D. Mayou, S. Wilson, G. Delgado-Barrio, Eds.), Vol. 15, p. 433. Springer, Dordrecht 2006; b) Kryachko E.S. and Remade F, Nano Lett., 5, 735 (2005); c) Kryachko E.S. and Remade F, J. Phys. Chem. B, 109, 22746 (2005); d) Kryachko E.S, Karpfen A. and Remade F, J. Phys. Chem. A, 109,7309 (2005); e) Kryachko E.S. and Remade F, in: Theoretical Aspects of Chemical Reactivity, (A. Torro-Labbe, Ed.), Vol. 16 of Theoretical and Computational Chemistry (P. Politzer, Ed.), p. 219. Elsevier, Amsterdam 2006; f) Kryachko E.S. and Remade F, in: Topics in the Theory of Chemical and Physical Systems, (S. Lahmar, J. Maruani, S. Wilson, G. Delgado-Barrio, Eds.), Vol. 16 of Progress in Theoretical Chemistry and Physics, p. 161. Springer, Dordrecht 2007; g) Kryachko E.S. and RemacleR, J. Chem. Phys., 127,194305 (2007); h) Kryachko E.S. and Remade F, Mol. Phys., 106,521 (2008); i) Kryachko E.S., J. Mol. Struct., 880,23 (2008); j) Kryachko E.S, Coll. Czech. Chem. Comm., R. Zahradnik Festschrift, 73, 1457 (2008); k) Kryachko E.S., in: Self-Organization of Molecular Sys¬tems in Micro-, Nano-, and Macro-Dimensions. NATO Ser. A, N. Russo, V. Antonchenko, and E. Kryachko (Eds.), Springer, Berlin 2009.
  • 40. Li J, Li X, Zhai H.-J. and Wang L.-S., Science, 299, 864 (2003).
  • 41. Kryachko E.S. and Remade F, Int. J. Quantum Chem., 107, 2922 (2007).
  • 42. Schneider H., Boese A.D. and Weber J.M., J. Chem. Phys., 123, 084307 (2005).
  • 43. Zheng W., Li X., Eustis S., Grubisic A, Thomas O., de Clercq H. and Bowen K, Chem. Phys. Lett., 444, 232 (2007).
  • 44. a) WuD.-Y., Duan S., LiuX.-M, Xu Y.-C, Jiang Y.-X, RenB.,XuX., Lin S.H. andTianZ.-Q, J. Phys. Chem. A, 112, 1313 (2008); b) see also Chen Y.X, Zou S.Z., Huang K.Q. and Tian Z.Q, J. Raman Spectrosc, 29, 749 (1998).
  • 45. a) Nuss H. and Jansen M, Angew. Chem. Int. Ed., 45, 4369 (2006); b) Nuss H. and Jansen M., Z Naturforsch. Sect. B, J. Chem. Sei., 61, 1205 (2006); c) Dietzel RD.C. and Jansen M, Chem. Commun., 2208 (2001).
  • 46. a) Shafai G.S., Sherry S, Krishnamurty S. and Kanhere D.G., J. Chem. Phys., 126, 014704 (2007); b) Pakiari A.H. and Jamshidi Z, J. Phys. Chem. A, 111, 4391 (2007); c) Aqil A., Qiu H, Greisch J.-F, J&öme R, De Pauw E. and Jöröme C, Polymer, 49, 1145 (2008) .
  • 47. Shi P., Jiang Q, Lin J, Zhao Y, Lin L. and Guo Z, J. Inorg. Biochem., 100, 939 (2006).
  • 48. Ahrens B, Friedrichs S, Herbst-Irmer R. and Jones P.G., Eur. J. Inorg. Chem., 2017 (2000).
  • 49. Friedrichs S. and Jones P.O., Z Naturforsch., 59b, 49 (2004).
  • 50. (a) Vazquez M.-V. and Martinez A, J. Phys. Chem. A, 112, 1033 (2008); (b) Valdespino-Saenz J. and Martinez A., Ibid. A, 112,2408 (2008). (c) Martinez A, Dolgounitcheva O, Zakrzewski V. G. and Ortiz i.V., Ibid. A, 112, 10399 (2008).
  • 51. Oncak M, Cao Y, Beyer M.K, Zahradnik R. and Schwarz H, Chem. Phys. Lett., 450, 268 (2008).
  • 52. Frisch M.J., Trucks G.W., Schlegel H.B, Scuseria O.E., Robb M.A, Cheeseman J.R., Montgomery Jr., JA, Vreven T, Kudin K.N, Burant J.C, Millam J.M, Iyengar S.S., Tomasi J., Barone V, Mennucci B, Cossi M., Scalmani G, RegaN, Petersson G.A., Nakatsuji H., Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M., Nakajima T, Honda Y, Kitao O., Nakai H, Kiene M, Li X, Knox J.E., Hratchian H.P, Cross J.B, Adamo C, Jaramillo J, Gomperts R, Stratmann R.E., Yazyev O, Austin A.J, Cammi R, Pomelli C, Ochterski J.W., Ayala P.Y, Morokuma K, Voth G.A., Salvador P., Dannenberg J.J, Zakrzewski V.G., Dapprich S, Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K, Foresman J.B., Ortiz J.V, Cui Q, Baboul A.G., Clifford S, Cioslowski J, Stefanov B.B., Liu G., Liashenko A, Piskorz P, Komaromi I, Martin R.L, Fox D.J, Keith T, Al-Laham M.A., Peng C.Y, Nanayakkara A., Challacombe M, Gill P.M.W., Johnson B., Chen W, Wong M.W, Gonzalez C. and Pople JA, GAUSSIAN03 (Revision C.02). Gaussian, Inc., Wallington, CT 2004.
  • 53. Ross R.B., Powers J.M., Atashroo T, Ermler W.C., LaJohn L.A. and Christiansen P.A., J. Chem. Phys., 93, 6654(1990).
  • 54. (a) Mirkin CA., Letsinger R.L., Mucic R.C. and Storhoff J.J., Nature, 382,607 (1996); (b) Elghanian R, Storhoff J.J, Mucic R.C, Letsinger R.L. and Mirkin CA, Science, 277, 1078 (1997); (c) Reynolds RA, Mirkin CA. and Letsinger R.L., J. Am. Chem. Soc, 122,3795 (2000); (d) Storhoff J.J., Lazarides A.A., Mucic R.C, Mirkin CA., Letsinger R.L. and Schatz G.C.Jbid., 122,4640 (2000); (e) Storhoff J.J. and Mirkin CA, Chem. Rev., 99, 1849 (1999); (f) Cao Y.W.C, Jin R. and Mirkin CA, Science, 297, 1536 (2002); (g) Nam J.-M, Thaxton CS. and Mirkin CA, Ibid., 301,1884 (2003); (h) Alivisatos A.P., Johnsson K.P., Peng X., Wislon T.E., Loweth C.J., Bruchez M.P., Jr. and Schultz G.C, Nature, 382,609 (1996); (i) Pirrung M.C., Angew. Chem. Int. Ed., 41,1277 (2002); (j) Daniel M.-C. and Astruc D, Chem. Rev., 104,293 (2004); (k) SeemanN.C, Nature, 421,427 (2003); (1) Liu Y, Meyer-Zaika W, Franzka S, Schmid G., Tsoli M. and Kuhn H, Angew. Chem., Int. Ed., 42, 2853 (2003) and references therein.
  • 55. Slocik J.M, Moore J.T. and Wright D.W., Nana Lett., 2,169 (2002).
  • 56. Richter J, Physica E, 16, 157 (2003) and references therein.
  • 57. The experimental value of EA"pt(Au) = 2.30 ± 0.10 eV according to: a) Gantefdr G., Krauss S. and Eberhardt W., J. Electron Spectrosc. Relat. Phenom., 88,35 (1998); 2.308664 + 0.000044 eV according to: b) Jotop H. and Lineberger W.C, J. Phys. Chem. Ref. Data, 14,731 (1985); and 2.927 ± 0.050 eV ac-cording to: c) Taylor K.J, Pettiettehall C.L, Cheshnovsky O. and Smalley R.E, J. Chem. Phys., 96, 3319 (1992); d) EA^Au) = 2.33 eV: Buckart S, Gantefdr G, Kim YD. and Jena P., J. Am. Chem. Soc., 125, 14205 (2003); e) EA^iAu) = 2.166 eV: Joshi A.M., Delgass W.N. and Thomson K.T., J. Phys. Chem. B, 109,22392 (2005); f) With the used basis set, MP2 yields 1.536 eV; g) The EA^Au) = 1.86 eV was calculated at the MCPF computational level in: Bauschlicher C.W, Jr., Langhoff S.R. and Par¬tridge H.J, J! Chem. Phys., 93,8133 (1990); g) The PW91PW91DFT level in conjunction with the basis set used in the present work yields 2.25 eV and 2.31 eV with the LANL2DZ basis set, as reported in: Walker A.V., J. Chem. Phys., 122, 094310 (2005).
  • 58. Zundel G, Es muss viel geschehen. Verlag fur Wissenschafts- und Regionalgeschihte Dr. Michael Engel, Berlin 2006.
  • 59. Zundel G, Hydration and intermolecular interaction - infrared investigation of polyelectrolyte mem¬branes. Academic Press, New York 1969.
  • 60. Zundel G.,Adv. Chem. Phys., 111, 1 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0015-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.