PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Nature of Hydrogen Bonding in Selected Hydrazide Derivatives Investigated via Static Models and Car-Parrinello Molecular Dynamics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The geometric and spectrocopic properties of 2-hydroxy-thiobenzhydrazide and 2-hydroxy-benzhydrazide were investigated within the frame work of Density Functional Theory (DFT). Special attention was devoted to the description and analysis of intra- and intermolecular hydrogen bonds. The choice of the compounds was dictated by their structural similarity and the presence of two types of hydrogen bridges: O–H...S (in 2-hydroxy-thiobenzhydrazide, less common) and O–H...O (in 2-hydroxy-benzhydrazide). The latter could be classified as a low-barrier hydrogen bond (LBHB). First the DFT method was used to obtain the geometric parameters for the monomeric and dimeric forms of the compounds at various levels of theory. Then the binding energy was calculated for the dimeric forms to estimate the strength of the intermolecular hydrogen bonds. Atoms in Molecules (AIM) theory was applied to show quantitatively how the formation of the intermolecular hydrogen bonds affects the strength of the intramolecular hydrogen bonds. The electron density and its Laplacian were calculated for the bond critical points defining the H-bridges. Car-Parrinello molecular dynamics (CPMD) was then used to investigate the changes in the geometric parameters as a function of simulation time. This part of the computational study was performed in vacuo and in the solid state. The vibrational properties of the investigated hydrazides were obtained via Fourier transform of the autocorrelation functions of the dipole moment and atomic velocity. It was found that the formation of the intermolecular H-bonds does not significantly affect the strength of the intramolecular H-bonds. There fore inductive and steric effects out side the immediate vicinity of the intramolecular bridge have minor influence on its investigated properties. The application of CPMD gave a more detailed picture of the bridged protons’ dynamics. The computational results agree with available experimental data. The influence of the intermolecular hydrogen bonding net work and non-bonded crystal field interactions on the vibrational features of the investigated molecules is demonstrated and discussed.
Słowa kluczowe
Rocznik
Strony
799--819
Opis fizyczny
Bibliogr. 88 poz., rys.
Twórcy
autor
autor
autor
  • National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia 2University of Wrocław, Faculty of Chemistry, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland phone: +48 71 3757 308, fax: +48 71 3282 348, anetka@elrond.chem.uni.wroc.pl
Bibliografia
  • 1. Pauling L, The Chemical Bond: A Brief Introduction to Modern Structural Chemistry, Cornell University Press: Ithaca, New York, 1967.
  • 2. Kollman P.A. and Allen L.C., Chem. Rev., 72, 283 (1972).
  • 3. Jeffrey G.A, An Introduction to Hydrogen Bonding, 1st ed., Oxford University Press: New York, NY, 1997, p. 184.
  • 4. Grabowski S., Ed, Hydrogen Bonding - New Insights, (Challenges and Advances in Computational Chemistry and Physics, 3), Springer: Dordrecht, The Netherlands, 2006.
  • 5. Hobza P. and Havlas Z, Chem. Rev., 100, 4253 (2000).
  • 6. Dziembowska T, Pol. J. Chem., 68, 1455 (1994).
  • 7. Panek J.J. and Jezierska A, J. Phys. Chem. A, 111, 650 (2007).
  • 8. Derewends Z.S., Lee L. and Derewenda U, J. Mol. Biol, 252, 248 (1995).
  • 9. Koch U. and Popelier P.L.A, J. Phys. Chem., 99, 9747 (1995).
  • 10. Masunov A, Dannenberg J.J. and Contreras R.H, J. Phys. Chem., 105, 4737 (2001).
  • 11. Castro M, Nicolas-Vazquez I, Zavala J.I, Sanchez-Viesca F. and Berros M, J. Chem. Theory Comput., 3, 681 (2007).
  • 12. Jones C.R., Qureshi M.K.N, Truscott F.R., Hsu S.-T.D, Morrison A.J. and Smith M.D, Angew. Chem. Int. Ed., 47, 7099 (2008).
  • 13. Wójcik J, Kamienska-Trela K, Pecul M, Bartoszak-Adamska E, Vdovienko S.I. and Gerus I.I., ChemPhysChem, S, 209 (2004).
  • 14. Meot-Ner (Mautner) M, Chem. Rev., 105, 213 (2005).
  • 15. Krygowski T.M. and Szatyłowicz H, J. Phys. Chem. A, 110, 7232 (2006).
  • 16. Szatyłowicz H, Krygowski T.M, Panek J.J. and Jezierska A, J. Phys. Chem. A, 112, 9895 (2008).
  • 17. Szatyłowicz H, J. Phys. Org. Chem., 21, 897 (2008).
  • 18. Szatyłowicz H. and Krygowski T.M, J. Mol. Struct, 844-845, 200 (2007).
  • 19. Gronert S. and Keeffe J, J. Am. Chem. Soc, 111, 2324 (2005).
  • 20. Pearson R, Chem. Rev., 85, 41 (1985).
  • 21. Li Q-Z., Hu T., An X-L., Gong B-A. and Cheng J-B., ChemPhysChem, 9, 1942 (2008).
  • 22. Grabowski S.J, J. Phys. Chem. A, 104, 5551 (2000).
  • 23. Chandra A.K., Nguyen M.T. and Zeegers-Huyskens T, J. Phys. Chem. A, 102, 6010 (1998).
  • 24. Li Q.Z., An X.L., Luan F, Li W.Z., Gong B.A., Cheng J.B. and Sun J.Z, Int. J. Quantum Chem., 108, 558 (2008).
  • 25. Rajagopal S. and Vishveshwara S., FEBSJ., Ill, 1819 (2005).
  • 26. Plaits J.A., Howard S.T. and Bracke B.R.F., J. Am. Chem. Soc, 118, 2726 (1995).
  • 27. Steiner T, Chem. Commun., 411 (1998).
  • 28. Steinwender E. and Mikenda W., Monatsh. Chem., 121, 809 (1990).
  • 29. Power L.F, Turner K.E. and Moore F.H., J. Chem. Soc, Perkin Trans. 2, 249 (1976).
  • 30. Posokhov Y, Górski A, Spanget-Larsen J, Duus F, Hansen P.E. and Waluk J, Chem. Phys. Lett., 350, 502 (2001).
  • 31. Du J-T, Li Y-M, Wei W, Wu G-S., Zhao Y-F, Kanazawa K, Nemoto T. andNakanishi U.,J. Am. Chem. Soc, 127, 16350(2005).
  • 32. Jezierska A. and Panek J. J, J! Comput. Chem. in press, available from http://dx.d0i.0rg/l 0.1002/jcc.21158
  • 33. Read W.G, Campbell E.J. and Henderson G., J. Chem. Phys., 78, 3501 (1983).
  • 34. Alkorta I, Rozas I. and Elguero J, J. Org. Chem., 62,4687 (1997).
  • 35. Rozas I, Alkorta I. and Elguero J, J. Phys. Chem. A, 101, 9457 (1997).
  • 36. Taylor P.R., J. Am. Chem. Soc, 104, 5248 (1982).
  • 37. Herrebout W.A., Melikova S.M, Delanoye S.N, Rutkowski K.S, Shchepkin D.N. and van der Veken B.J, J. Phys. Chem. A, 109, 3038 (2005).
  • 38. Rutkowski K.S., Rodziewicz P., Melikova S.M. and Roll A, Chem. Phys., 327, 193 (2006).
  • 39. Rutkowski K.S. and Melikova S.M, J. Mol Struct, 448,231 (1998).
  • 40. Cleland WW, Frey P.A. and Gerlt JA, J. Biol. Chem., 273, 25529 (1998).
  • 41. Filarowski A, Koll A. and Głowiak T, J. Chem. Soc, Perkin Trans. 2, 835 (2002).
  • 42. Belot J.A, Clark J., Cowan J.A, Harbison G.S., Kolesnikov A.I., Kye Y-S., Schultz A.J, Silvernail C. and Zhao X, J. Phys. Chem. B, 108, 6922 (2004).
  • 43. Kästner J. and Blöchl P.E., ChemPhysChem, 6, 1724 (2005).
  • 44. Trout B.L. and Parrinello M, J. Phys. Chem. B, 103, 7340 (1999).
  • 45. Borsenberger P.M. and Weiss D.S., Organic Photoreceptors for Imaging Systems, Marcel Dekker: New York, 1993.
  • 46. Tour J.M, Molecular Electronics. Commercial Insight, Chemistry, Devices, Architecture, and Pro-gramming; World Scientific: Singapore, 2003.
  • 47. Jezierska A, Panek J.J. and Koll A, ChemPhysChem, 9, 839 (2008).
  • 48. Jezierska A. and Panek J.J, J. Chem. Theory Comput, 4, 375 (2008).
  • 49. Sobczyk L, Grabowski S.J. and Krygowski T.M., Chem. Rev., 105, 3513 (2005).
  • 50. Rodriguez-Cördoba W, Zugazagoitia J.S, Collado-Fregoso E. and Peon J., J. Phys. Chem. A, 111, 6241 (2007).
  • 51. Waluk J, Ed, Conformational Analysis of Molecules in Excited State, J. Wiley-VCh: New York, 2000.
  • 52. Marcano L, Carruyo I, Del Campo A. and Montiel X, Environ. Res., 94, 221 (2004).
  • 53. Dessen A, Quemard A, Blanchard J.S, Jacobs Jr. W.R. and Sacchettin J.C, Science, 267,1638 (1995).
  • 54. Barni R, Lewis S.W, Berti A, Miskelly G.M. and Lago G, Talanta, 72, 896 (2007).
  • 55. Rahman V.P.M, Mukhtar S, Ansari W.H. and Lemiere G, Eur. J. Med. Chem., 40, 173 (2005).
  • 56. Joshi S, KhoslaN. and Tiwari P, Bioorg. Med. Chem., 12, 571 (2004).
  • 57. Al-MawsawiL.Q., Dayam R., WitvrouwL.T.M., DebyserZ. andNeamatiN,Bioorg. Med. Chem. Lett., 17, 6472 (2007).
  • 58. Marastoni M, Baldisserotto A, Trapella C, McDonald J, Bortolotti R and Tomatis R, Eur. J. Med. Chem., 40, 445 (2005).
  • 59. Galiano S., Erviti O, Perez S., Moreno A, Juanenea L., Aldana I. and Monge A, Bioorg. Med. Chem. Lett., 14, 597(2004).
  • 60. Bayer E.A. and WilchekM, MethodsEnzimol., 184, 138 (1990).
  • 61. Stieber F, Grether U. and Waldmann H, Angew. Chem. Int. Ed., 38, 1073 (1999).
  • 62. Park YS. and Paek K, Org. Lett., 10, 4867 (2008).
  • 63. Zhao X, Wang X-Z, Jiang X-K., Chen Y-Q., Li Z-T. and Chen G-J., J. Am. Chem. Soc, 125, 15128 (2003).
  • 64. Mikenda W, Pertlik F. and Steinwender E, Monatsh. Chem., 124, 867 (1993).
  • 65. Ratajczak H, Baran J., Barnes A.J, Barycki J., Debrus S, Latajka Z., May M. and Pietraszko A, J. Mol. Struct., 596, 17(2001).
  • 66. Atovmyan Y.G., Nikonova L.A, Chuev I.I, Utenyshev A.N., Aldoshina M.Z. and Aldoshin S.M., J. Mol. Struct., 474, 167 (1999).
  • 67. Hohenberg P. and Kohn W, Phys. Rev., 136, B864 (1964).
  • 68. Kohn W. and Sham L.J., Phys. Rev., 140, A1133 (1965).
  • 69. Car R. and Parrinello M, Phys. Rev. Lett., 55,2471 (1985).
  • 70. Bader R.F.W, Atoms in Molecules, A Quantum Theory, Clarendon Press: Oxford, 1990.
  • 71. Bader R.F.W. and Beddall P.M., J. Chem. Phys., 56, 3320 (1972).
  • 72. Gaussian 03, Revision C.02, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery Jr. JA., Vreven T, Kudin K.N, Burant J.C, Millam J.M., Iyengar S.S., Tomasi J, Barone V., Mennucci B, Cossi M, Scalmani G., Rega N., Petersson G.A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M., Nakajima T, Honda Y, Kitao O, Nakai H, Kiene M., Li X, Knox J.E., Hratchian H.P., Cross J.B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R.E., Yazyev O, Austin A.J, Cammi R, Pomelli C, Ochterski J.W., Ayala P.Y, Morokuma K, Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O, Malick D.K, Rabuck A.D., Raghavachari K, Foresman J.B., Ortiz J.V., Cui Q, Baboul AG, Clifford S., Cioslowski J, Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I, Martin R.L, Fox D.J., Keith T, Al-Laham M. A., Peng C.Y., Nanayakkara A, Challacombe M., Gill P.M.W., Johnson B, Chen W., Wong M.W., Gonzalez C. and Pople J.A.; Gaussian, Inc., Wallingford CT, 2004.
  • 73. Becke A.D., J. Chem. Phys., 98, 5648 (1993).
  • 74. Lee C, Yang W. and Parr R.G., Phys. Rev. B, 37, 785 (1988).
  • 75. Ditchfield R, Hehre W.J. and Pople J.A., J. Chem. Phys., 54, 724 (1971).
  • 76. Krishnan R, Binkley J.S., Seeger R. and Pople J.A., J. Chem. Phys., 72, 650 (1980).
  • 77. Boys S.F. and Bernardi F, Mol. Phys., 19, 553 (1970).
  • 78. Bader R.F.W, AIMPAC, Suite of Programs for the Theory of Atoms in Molecules; available from http://www.chemistry.mcmaster.ca/aimpac/
  • 79. CPMD Copyright IBM Corp. 1990-2004, Copyright MPI fuer Festkoerperforschung Stuttgart 1997-2001.
  • 80. Schlegel H.B., Theor. Chim. Acta, 66, 333 (1984).
  • 81. Perdew J.P, Burke K. and Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996).
  • 82. Troullier N. and Martins J.L., Phys. Rev. B, 43, 1993 (1991).
  • 83. Nose S, Mol. Phys., 52, 255 (1984).
  • 84. Nose S.,J. Chem. Phys., 81, 511 (1984).
  • 85. Hoover W.G., Phys. Rev. A, 31, 1695 (1985).
  • 86. Humphrey W., Dalke A. and Schulten К, J. Mol. Graph., 14, 33 (1996).
  • 87. Copyright © 1986-1993, 1998, 2004, Thomas Williams, Colin Kelley.
  • 88. Tschumper G.S., Leininger M.L, Hoffman B.C., Valeev E.F., Schaefer III H.F. and Quack M, J. Chem. Phys., 116, 690 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0015-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.