PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-Resolved Infrared Spectroscopy of Water. Relation between the OH Stretching Frequency and the OO Distance

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is shown how infrared pump-probe spectroscopy can be used to measure subpico second variations of the oxygen-oxygen distribution function in liquid water. A diluted solution HDO/D2O rather than pure H2O is considered to switch off resonant vibrational interactions between water molecules; the local structure remains unchanged in this substitution. The present study is limited to times superior to 100–200 fs. This permits to avoid problems generated by hard sphere type collisions between water mole ules, as well as the interference between ultrafast pump and probe pulses. It is then shown that the Novak-Mikenda type relations between the OH stretching frequency and the OO distance largely sur vive when going from standard to ultrafast infrared spectroscopy. More over, the infrared pump-probe profiles of OH stretching bands closely parallel the oxygen-oxygen distribution functions in this time do main. Infrared pump-probe spectroscopy is thus a use ful substitute of time-resolved X-ray diffraction in this exceptional case.
Rocznik
Strony
737--745
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
autor
  • Laboratoire de Phy sique Théorique de la Matiére Condensée, Université Pierre et Marie Curie-Paris 6, Case Courrier 121, 4 Place Jussieu, 75252 Paris Cedex 05, France, bratos@lptmc.jussieu.fr
Bibliografia
  • 1.Rundle R.E. and Parasol M., J. Chem. Phys., 20(9), 1487 (1952).
  • 2.Lord R. and Merrifeld R., J. Chem. Phys., 21, 166 (1953).
  • 3.Nakamoto K, Margoshes M. and Rundle RE., J. Am. Chem. Soc, 77(24), 6480 (1955).
  • 4.Pimentel G. and Sederholm C, J. Chem. Phys., 24, 639 (1956).
  • 5.Ratajczak H. and Orville-Thomas W.J., J. Mol. Struct., 1, 449 (1968).
  • 6.Novak A., Struct. Bonding (Berlin), 18, 177 (1974).
  • 7.Mikenda W., J. Mol. Struct., 147(1-2), 1 (1986).
  • 8.LibowitzkyE., Chemical Monthly, 130, 1047(1999).
  • 9.Lutz H., Henning J. and Engelen B., J. Mol. Struct., 240, 275 (1990).
  • 10.Hermansson K. and Probst M., Int. J. Quantum Chem., 63, 537 (1997).
  • 11.Rey R, Moller K.B. and Hynes J.T., J. Phys. Chem. A, 106(50), 11993 (2002).
  • 12.Lawrence CP. and Skinner J.L., J. Chem. Phys., 118(1), 264 (2003).
  • 13.Mukamel S, Principles ofNonlinear Optical Spectroscopy, Oxford University Press,New York, 1995.
  • 14.Graener H., Seifert G. and Laubereau A., Phys. Rev. Lett., 66, 2092 (1991).
  • 15.Laenen R, Rauscher C. and Laubereau A., Phys. Rev. Lett., 80, 2622 (1998).
  • 16.Woutersen S. and Bakker H., Phys. Rev. Lett., 83, 2077 (1999).
  • 18.Stenger J, Madsen D., Hamm P., Nibbering E. and Elsaesser T., Phys. Rev. Lett., 87, 027401 (2001).
  • 20.Fecko C.J, Eaves J.D, Loparo J.J, Tokmakoff A. and Geissler P.L., Science, 301, 1698 (2003).
  • 21.Yeremenko S, Pshenichnikov M.S. and Wiersma D.A., Chem. Phys. Lett., 369(1-2), 107 (2003).
  • 22.Kolano C, Helbing J, Kozinski M, Sander W. and Hamm P., Nature (London), 444,469 (2006).
  • 23.Bakker H.J, Rezus Y.L.A. and Timmer R.L.A., to appear in J. Phys. Chem. A, 000, 000 (2008).
  • 24.Bratos S. and Wulff M., Adv. Chem. Phys., 137,1 (2008).
  • 25.   Rey R. and Hynes J.T., J. Chem. Phys., 104(6), 2356 (1996).
  • 26.   Berendsen H, Grigera J. and Straatsma T, J. Phys. Chem., 91, 6269 (1987).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0015-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.