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Introduction 

The transport of radon (222Rn) from the ground towards 
the surface is influenced by a number of geophysical 
and geological parameters, among them seismicity. 
Prior to an earthquake, the formation of stress causes 
changes in the strain field. The displacement of rock 
mass within the earth’s crust before an earthquake 
leads to changes in gas transport from deep layers in the 
earth to the surface [5]. As a result, larger quantities of 
radon are released from the pores and fractures of the 
rocks towards the surface. This may be considered as 
an anomaly in the concentration of radon. Because of 
seismicity, changes in underground fluid flow may ac-
count for anomalous changes in concentration of radon 
and its progeny [8]. A small change in velocity of gas [6] 
into or out of the ground causes a significant change in 
radon concentration at shallow soil depth as changes 
in gas flow disturb the strong radon concentration 
gradient existing between the soil and the atmosphere. 
A small change in gas flow velocity causes a significant 
change in radon concentration. Thus, monitoring of 
radon in soil gas is a means of detecting changes related 
to an earthquake. 

For small earthquakes, it is often impossible to 
identify an anomaly caused by a seismic event and not 
by meteorological or hydrological events. Therefore, the 
implementation of more advanced statistical methods 
in data evaluation appears to be essential [1, 3, 7]. 

In this contribution, the 32-month time series of 
radon concentration together with the environmental 
parameters (air and soil temperature, barometric pres-
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sure, rainfall) has been analysed in order to find radon 
anomalies, possibly caused by earthquakes. 

In a 480 cm deep borehole at the Orlica fault in the 
Krško basin in SE Slovenia (Fig. 1), radon concentration 
in soil gas was measured continuously (once an hour) 
using a Barasol radon probe (MC-450, ALGADE, 
France). In addition to radon, the probe also measures 
barometric pressure and temperature. The borehole 
wall was protected with a plastic tube and isolated from 
the atmospheric air with a plastic cap and soil cover to 
reduce hydro-meteorological influence on the mea-
surement. Decision trees and artificial neural networks 
have been applied to predict radon concentration from 
meteorological data. 

As often experienced, for earthquakes Dobrovolsky’s 
equation [4] was used to calculate RD, i.e., RD = 100.43M, 
where M is the earthquake magnitude and RD the radius 
of the zone within which precursory phenomena may be 
manifested (the so-called Dobrovolsky’s radius in km). 
Earthquakes, for which the ratio between RE (distance 
between the epicentre and our measuring site) and RD 
is less than 2, have been used in the interpretation. 

Methodology 

The time series was divided into two subsets: (i) the 
seismic activity (SA) subset possibly affected by seismic 
activity, comprising the data recorded during periods 
(called “seismic windows”) lasting from n days before to 

n days (n varying from 1 to 10 days) after the occurrence 
of a seismic event, and (ii) the non-SA subset without 
seismic events, with data remained after subtracting the 
SA subset from the entire database. Both decision trees 
and neural networks were trained to predict the radon 
activity concentration based on the non-SA subset of the 
environmental data. The entire series was then subjected 
to analysis and the prediction appeared to fail during the 
SA periods. By appropriately chosen analytical condi-
tions, a statistically significant difference between the 
measured and predicted values of radon concentration 
was observed before earthquakes (called “correct anoma-
lies” – CA). Unfortunately, anomalies were observed also 
during non-SA periods (called “false anomalies” – FA). 
On the other hand, for some earthquakes no anomaly 
was found (called “no anomalies” – NA). 

Results and discussion 

Experimental details are described elsewhere [12]. Air 
temperature and rainfall were measured at the meteo-
rological station Bizeljsko, approximately 14 km from 
the boreholes. Data recorded are shown in Fig. 2. 

Decision trees 

Since radon concentration is a numeric variable, we 
have approached the task of predicting radon concen-

Fig. 1. The map of Slovenia with the measurement site at the Krško town (black circle) and epicentres of the earthquakes 
(open circles, with radii corresponding to their magnitudes) which occurred from April 1999 to October 2001, and taken into 
account in our calculations.
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tration from meteorological data using regression (or 
function approximation) methods. We used regression 
trees [2], as implemented with the WEKA data mining 
suite [9]. 

When seismic windows of 7 days have been used, the 
best agreement between the measured and calculated 
concentrations during the non-SA periods has been 
found by an analysis in which the length of the SA pe-
riods was varied from 1 to 7 days [11]. The largest drop 
in the correlation coefficient was observed between 6 
and 7 days before an earthquake. For every earthquake, 
a CA anomaly was found, but, undesirably, we have 
not been able to decrease the number of FA anomalies 
below 6. Figure 3 shows the measured radon concentra-
tion (m-CRn; dotted line) and that predicted by decision 
trees (p-CRn; full line). While the upper plot shows good 
agreement between the measured and predicted values 
in a non-SA period (from February 2, 2000 to March 

3, 2000), the lower one shows a significant difference 
between the 2 in the SA periods (from September 9, 
2000 to December 31, 2000). Next to bars, showing 
the magnitude of the earthquakes, values of the RE/RD 
ratios are also given. 

Neural networks 

The ANNs (artificial neural networks) are a well estab-
lished tool for forecasting problems in different areas, 
like weather, econometrics, financial, stock prices, 
material science, with over 40 years of tradition [10]. Be-
cause of their universal approximated functional form, 
ANNs also appear to be an appropriate choice for mod-
elling nonlinear dependency of radon concentrations 
on multiple variables. An enormous number of various 
topologies, training algorithms and architectures exist, 

Fig. 2. Time run of daily average radon concentration in soil gas and of soil temperature recorded with Barasol probes in 
480 cm deep boreholes at the Krško-1 station at the Orlica fault in the Krško basin during the period from June 2000 to Janu-
ary 2002. Local earthquakes with RE/RD equal to or less than 2 [4], barometric pressure, air temperature and rainfall at the 
nearby meteorological station Bizeljsko are also shown.
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applicable to a class of modelling problems. It is difficult 
to tell in advance which training rule is the most suitable 
for a certain problem or which topology would produce 
the best results. After extensive experimentation using 
the collected data we have chosen the traditional MLP 
(multilayer perceptron) with conjugate gradient learn-
ing algorithm for use in further actions. 

The non-SA datasets contained from 816 samples 
(seismic window 0 days) to 550 samples (seismic window 
10 days) and were firstly randomized and then each of 
them was divided into three sets: (i) the training set 
(60%), (ii) the cross-validation set (15%) and (iii) the 
test set (25%). The training and the cross-validation 
sets were used to train the ANN while the test set was 

Fig. 3. Comparison of the 
measured radon concentration 
(m-CRn; dotted line) and the 
radon concentration predicted 
by decision trees (p-CRn; full 
line) for non-SA period from 
February 2, 2000 to April 29, 
2000 (upper graph) and for SA 
period from September 10, 2000 
to December 31, 2000. Also 
earthquakes are drawn as bars 
and RE/RD ratio is given. 

Fig. 4. Comparison of the 
measured radon concentration 
(m-CRn; dotted line) and radon 
concentration predicted by 
ANN (p-CRn; full line) for the 
non-SA period from Febru-
ary 2, 2000 to April 29, 2000 
(upper graph) and for the SA 
period from September 10, 
2000 to December 31, 2000. 
Also earthquakes are drawn as 
bars with the values of RE/RD 
ratios attached.
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used to verify its performance. The number of hidden 
layers and the training parameters (the learning step, 
the momentum) were selected by a well known genetic 
algorithm which creates a population of solutions and 
applies genetic operators such as mutation and cross-
over to evolve the solutions in order to find the best 
one. For the transfer function tanh() was used in all 
four layers. 

For each dataset out of 11, the ANN with two hid-
den layers with 5 neurons in the input layer fed by the 
five environmental data, 8 neurons in the first hidden 
layer, 7 in the second hidden layer and one neuron in the 
output layer was generated. The network was trained 
two times for predefined 45 000 epochs with reset of 
weights after the first training although the training 
and cross-validation error converged much sooner in 
most of the cases. 

We also investigated the possibility of an automatic 
definition of anomaly detection parameters for the 
available dataset. Observing the difference in correlation 
coefficients between the ANN prediction of non-SA data 
and SA + non-SA data we indicated that SA affects the 
radon concentrations mostly for ± 7 days away from the 
seismic event. From 13 earthquakes, 10 CA and no FA 
or NA anomalies were found. 

Figure 4 shows the measured radon concentration 
(m-CRn; dotted line) and radon concentration predicted 
by ANN (p-CRn; full line). While the upper plot again 
shows good agreement between the measured and 
predicted values in a non-SA period (from February 2, 
2000 to March 3, 2000), the lower one shows a signifi-
cant difference between them in the SA periods (from 
September 9, 2000 to December 31, 2000). Earthquakes 
are shown as bars with RE/RD ratio. 

Conclusion 

The results of applying decision trees and neural networks 
to identify radon anomalies, possibly caused by seismic 
events and not solely ascribed to the effects of environ-
mental parameters, are encouraging. We shall direct our 
efforts towards improvement in applying both methods, in 
order to have the number of CA anomalies equal to the 
number of earthquakes, and to reduce the number of FA 
and NA anomalies to a minimum, desirably to zero. 
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