PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Specific properties of a model of thoron and its decay products in indoor atmospheres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference "Radon in Environment" 10-14 May 2009, Zakopane Poland
Języki publikacji
EN
Abstrakty
EN
Whereas several models of indoor concentrations of radon and its decay products exist, mod els for the occurrence and spatial distribution of thoron (220Rn) and its decay products are lacking. This study highlights the specific properties of the thoron decay chain and presents their consequences for a thoron model. The short half-life of thoron results in an inhomogene ous spatial distribution, which is determined by diffusive and advective transport. The long half- -life of the decay product 212Pb accounts for a strong influence of air exchange on its overall concentration as well as on its unattached fraction. It could further be predicted that also the unattached part of 212Pb is distributed inhomogeneously. The theoretical structure of a thoron model, which can neglect the most short-lived decay products but must account for the influence of air exchange in a stronger way than it is the case for radon, results from these considerations.
Czasopismo
Rocznik
Strony
463--469
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 1 Ingolstädter Landstr., 85764 Neuherberg, Germany, Tel.: +49 89 3187 2203, Fax: +49 89 3187 3323, oliver.meisenberg@helmholtz-muenchen.de
Bibliografia
  • 1. Cheng YS (1997) Wall deposition of radon progeny and particles in a spherical chamber. Aerosol Sci Tech 27:131–146
  • 2. Doi M, Kobayashi S, Fujimoto K (1992) A passive measurement technique for characterisation of high-risk houses in Japan due to enhanced levels of indoor radon and thoron concentrations. Radiat Prot Dosim 45:425–430
  • 3. Firestone RB, Shirley VS, Chu SF, Baglin CM, Zipkin J (1996) Table of isotopes. CD ROM ed. Wiley-Interscience, New York
  • 4. Föll H (2008) Lifetime and diffusion length. In: Föll H (ed) Semiconductors I. Christian-Albrechts-Universität, Kiel
  • 5. Haninger T (1997) Messungen der Größenverteilung von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexpositionen verursachten Lungenkrebsrisikos. GSF-Forschungszentrum für Umwelt und Gesundheit, Oberschleißheim
  • 6. Jacobi W (1972) Activity and potential α-energy of 222radon-and 220radon-daughters in different air atmospheres. Health Phys 22:441–450
  • 7. James AC (1988) Lung dosimetry. In: Nazaroff WW, Nero AV (eds) Radon and its decay products in indoor air. Wiley-Interscience, New York, pp 259–309
  • 8. Knutson EO (1988) Modeling indoor concentrations of radon’s decay products. In: Nazaroff WW, Nero AV (eds) Radon and its decay products in indoor air. Wiley-Interscience, New York, pp 161–202
  • 9. Li WB, Tschiersch J, Oeh U, Hoeschen C (2008) Lung IRPA 12, 19–24 October 2008. International Radiation Protection Association, Buenos Aires, Argentina
  • 10. Mohnen VA (1969) Die radioaktive Markierung von Aerosolen. Z Phys A 229:109–122
  • 11. Parker GB, McScorley M, Harris J (1990) The northwest residential infiltration survey: a field study of ventilation in new homes in the Pacific North West. In: Sherman MH (ed) Air change rate and airtightness in buildings. American Society for Testing and Materials, West Conshohocken, pp 93–103
  • 12. Philipsborn Hv, Geipel R, Just G (2000) Radon exhalation from building materials – a contribution to metrology in radiation protection. In: Proc of the 5th Int Conf High Levels of Natural Radiation and Radon Areas: Radiation Dose and Health Effects, 4–7 September 2000, Munich, Germany 2:265–268
  • 13. Porstendörfer J (1991) Tutorial lesson: Properties and behaviour of radon and thoron and their decay products in the air. In: Proc of the 5th Int Symp on the Natural Radiation Environment, 22–28 September 1991, Salzburg, Austria
  • 14. Porstendörfer J (1994) Properties and behaviour of radon and thoron and their decay products in the air. J Aerosol Sci 25:219–263
  • 15. Porstendörfer J, Mercer TT (1978) Concentration distributions of free and attached Rn and Tn decay products in laminar aerosol flow in a cylindrical tube. J Aerosol Sci 9:283–290
  • 16. Porstendörfer J, Reineking A (2000) Radon characteristics related to dose for different living places of the human. In: Proc of IRPA 10, 14–19 May 2000. International Radiation Protection Association, Hiroshima, Japan
  • 17. Reineking A, Porstendörfer J (1990) “Unattached” fraction of short-lived Rn decay products in indoor and outdoor environments: an improved single-screen method and results. Health Phys 58:715–727
  • 18. Shang B, Tschiersch J, Cui H, Xia Y (2008) Radon survey in dwellings of Gansu, China: the influence of thoron and an attempt for correction. Radiat Environ Biophys 47:367–373
  • 19. Tuccimei P, Moroni M, Norcia D (2006) Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration. Appl Radiat Isot 64:254–263
  • 20. Underhill DW (1993) Basic theory for the diffusive sampling of radon. Health Phys 65:17–24
  • 21. Wiegand J, Feige S, Quingling X et al. (2000) Radon and thoron in cave dwellings (Yan’an, China). Health Phys 78:438–444
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0014-0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.