PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the energy spectrum and spatial spread of proton beams used in eye tumor treatment on the depth-dose characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the energy spectrum and the spatial spread of a therapeutic proton beam impinging on an irradiated medium (called the entrance beam) on the depth-dose characteristics in water, in the proton energy range of 50 division sign 70 MeV was studied. It turns out that full width at half maximum (FWHM) of the Bragg peak increases almost linearly with increasing proton energy. It ranges from 1.53 mm for 50 MeV to 2.59 mm for 70 MeV, for monoenergetic protons. Moreover, the significant influence of the energy spread of the entrance proton beam on the intensity and FWHM of the Bragg peak is visible. FWHM of the Bragg peak of 60 MeV protons is equal to 2.03, 3.37 and 5.86 mm for a monoenergetic beam and beams with an energy spread of 0.5 and 1 MeV SD (standard deviation), respectively. The intensity of the Bragg peak of a 60 MeV proton beam with an energy spread of 1 MeV SD is approximately 25% less than that for a monoenergetic beam. Moreover, the Bragg peak shifts to smaller depths as the energy spread of the entrance beam increases. The shift of the peak is about 0.2÷0.3 mm for a beam with an energy spread of 0.5 MeV SD and between 0.4 division sign 0.5 mm for an energy spread of 1 MeV SD, compared with a monoenergetic beam in the energy range from 50 to 60 MeV. However, the spatial spread of the entrance proton beam does not affect significantly the depth-dose characteristic.
Słowa kluczowe
Czasopismo
Rocznik
Strony
313--316
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
autor
autor
  • Department of Nuclear Physics and Its Application, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland, Tel.: +48 32 359 1888, Fax: +48 32 258 8431, akonefal@us.edu.pl
Bibliografia
  • 1. Brada M, Pijls-Johannesm AM, De Ruyssher D (2007) Proton therapy in clinical practice: current clinical evidence. J Clin Oncol 25;8:965–970
  • 2. Cirrone GAP (2006) The INFN experience in the hadron therapy field. Pol J Environ Stud 15;4A:171–173
  • 3. http://www.geant4.web.cern.ch
  • 4. http://www.lns.infn.it/CATANA/CATANA/
  • 5. IAEA (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. International Atomic Energy Agency, Vienna
  • 6. Konefał A (2006) Monte Carlo simulations with the use of the GEANT4 code. Postępy Fizyki 57;6:242–251 (in Polish)
  • 7. Kraft G (2000) Tumor therapy with heavy charged particles. Prog Part Nucl Phys 45:S473–S544
  • 8. Morávek Z, Bogner L (2009) Analysis of the physical interactions of therapeutic proton beams in water with the use of Geant4 Monte Carlo calculations. Z Med Phys 19:174–181
  • 9. Tang Shi-Biao, Yin Ze-Jie, Huang Huan, Cheng Yan, Cheng Fu-Hui, Mao Feng-Hua (2006) Geant4 used in medical physics and hadron therapy technique. Nucl Sci Techniques 17;5:276–279
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0014-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.