PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of radiotherapy is to maximize the dose applied to the tumor while keeping the dose to the surrounding healthy tissue as low as possible. To further enhance dose to a tumor, techniques to radiosensitization of the tumor, using high atomic number elements, have been proposed. The aim of this study was to investigate the influence of using gold nanoparticles as a contrast agent on tumor dose enhancement when the tissue is irradiated by a typical mono energy X-ray beam. To improve the conventional radiotherapy enhancement of the absorbed dose in a tumor tissue and to spare the skin and normal tissues during irradiation in the presence of concentration agent, a model based on a Monte Carlo N-Particle eXtended (MCNPX) computer code has been designed to simulate the depth dose in a phantom containing an assumed tumor. Test was carried out in two phases. In phase 1, verification of this model using the MCNPX was evaluated by comparing the obtained results with those of the published reports. In phase 2, gold was introduced into assumed tumor inside the phantom at different depths in the simulation program. Simulation was performed for four different concentrations of gold nanoparticles using a low mono-energetic parallel beam of synchrotron radiation. The obtained results show that the optimum energy for dose enhancement is found to be around 83–90 keV for all gold concentrations. The dose enhancement factor is increased linearly with concentration and diminished in depth along the central beam in the tumor. This approach of introducing contrast agents in conventional radiotherapy could hopefully prepare new treatment planning and improve the efficiency of tumor therapy.
Czasopismo
Rocznik
Strony
307--312
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
autor
  • Nuclear Engineering and Physics Department, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran, Iran, Tel.: +98 21 6454 2555, Fax: +98 21 6649 5519, h.r.k.aut@gmail.com
Bibliografia
  • 1. Barth RF, Soloway AH, Farichild RG, Brugger RM (1992) Boron therapy for cancer. Realities and prospects cancer 70:2995–3007
  • 2. Cho SH (2005) Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:163–173
  • 3. Corde S, Joubert A, Adam JF et al. (2004) Synchrotron radiation based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds. Br J Cancer 91:544–551
  • 4. Esteve F, Corde S, Elleaume H et al. (2002) Enhanced radiosensitivity with iodinated contrast agents using monochromatic synchrotron X-rays on human cancerous cells. Acad Radiol 9:540–543
  • 5. Ghasemi M, Shamsae M, Ghannadi M, Raisali G (2009) Dosimetric studies of micropencil X-ray beam interacting with labeled tissues by Au and Gd agents using Geant4. Radiat Prot Dosim 133:97–104
  • 6. Goudsmit S, Saunderson JL (1940) Multiple scattering of electrons. Phys Rev 57:24–29
  • 7. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985
  • 8. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 4:309–315
  • 9. Hendricks JS, McKinney GW, Waters LS et al. (2002) MCNPX user’s manual, version 2.4.0. Report LA CP02-408. Los Alamos National Laboratory
  • 10. Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364
  • 11. ICRU (1989) Tissue substitutes in radiation dosimetry and measurement. Report ICRU no 44. International Commission on Radiation Units and Measurement, Bethesda, MD
  • 12. Karnas SJ, Yu E, McCGarry RC, Battista J (1999) Optimal photon energies for IUdR K-edge radiosensitization with filtered X-ray and radioisotope sources. Phys Med Biol 44:2537–2549
  • 13. Khan FM (2003) The physics of radiation therapy. Lippincott Williams & Wilkins, Philadelphia. Vol. 14, pp 297–299
  • 14. Mello RS, Callisen H, Winter J, Kagan AR, Norman A (1983) Radiation dose enhancement in tumors with iodine. Med Phys 10:75–78
  • 15. Mesa AV, Norman A, Solberg TD, Demarco JJ, Smathers JB (1999) Dose distributions using kilovoltage X-rays and dose enhancement from iodine contrast agents. Phys Med Biol 44:1955–1968
  • 16. Mott NF (1929) The scattering of fast electrons by atomic nuclei. Proc R Soc London A 124:425–442
  • 17. Phillips MH, Stelzer KJ, Griffin TW, Mayberg MR, Winn H (1994) Radiosurgery: a review and comparison of methods. J Clin Oncol 12:1085–1099
  • 18. Pignol JP, Rakovitch E, BeacheyDand Le, Sech C (2003) Clinical significance of atomic inner shell ionization (ISI) and Auger cascade for radiosensitization using IudR, BUdR, platinum salts, or gadolinium porphyrin compounds. Int J Radiat Oncol Biol Phys 55:1082–1091
  • 19. Regulla DF, Hieber LB, Seidenbusch M (1998) Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiat Res 150:92–100
  • 20. Riley ME, Mac Callum CJ, Biggs F (1975) Theoretical electron-atom elastic scattering cross-sections, selected elements, 1 keV to 256 keV. At Data Nucl Data Tables 15:443–447
  • 21. Robar JL, Riccio SA, Martin MA (2002) Tumor dose enhancement using modified megavoltage photon beams and contrast media. Phys Med Biol 47:2433–2449
  • 22. RSICC (2002) Computer Code Collection. Report CCC-715 LANL, Los Alamos. Radiation Safety Information Computational Center, Oak Ridge, Tennessee
  • 23. Santos Mello R, Callisen H, Winter, Kagan AR, Norman A (1983) Radiation dose enhancement in tumors with iodine. Med Phys 10:75–78
  • 24. Solberg TD, Iwamoto KS, Norman A (1992) Calculation of radiation dose enhancement factors for dose enhancement therapy of brain tumors. Phys Med Biol 37:439–443
  • 25. Verhaegen F, Brigitte R, Deblois F, Devic S, Seuntjens J, Hristov D (2005) Dosimetric and microdosimetric study of contrast-enhanced radiotherapy with kilovolt X-rays. Phys Med Biol 50:3555–3569
  • 26.Webb S (2001) Intensity-modulated radiation therapy. Institute of Physics Publishing, Bristol
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0014-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.