PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyperfine interactions in Ho(Fe1-xCox)2 compounds at 295 K

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Synthesis of Ho(Fe1–xCox)2 intermetallic compounds, studies of their crystal structure and 57Fe Mössbauer effect analysis were carried out at 295 K. X-ray measurements evidence a pure cubic Fd3m, C15, MgCu2-type Laves phase. The unit cell parameter decreases non-linearly with composition parameter x. Mössbauer effect spectra for the Ho(Fe1–xCox)2 series were composed of a number of locally originated subspectra due to random Fe/Co nearest neighbourhoods. Hyperfine interaction parameters, i.e. isomer shift, the magnetic hyperfine field and a quadrupole interaction parameter were determined from the fitting procedure of the spectra, for both the individual nearest neighbourhoods, and for the sample as bulk. As a consequence of Fe/Co substitution a Slater-Pauling type curve for the average magnetic hyperfine field vs. x is observed. The correlation between the local magnetic hyperfine fields and the average magnetic hyperfine fields is related to weak and strong ferromagnetism of the transition metal sublattice.
Czasopismo
Rocznik
Strony
279--284
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
autor
autor
autor
autor
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 2990, Fax: +48 12 634 0010, pszczola@agh.edu.pl
Bibliografia
  • 1. Barbara B, Gignoux D, Vettier C (1988) Lectures on modern magnetism. Science Press Beijing, Berlin-Heidelberg
  • 2. Burzo E, Chełkowski A, Kirchmayr HR, Madelung O, Wijn HPJ (eds) (1990) Landölt-Bornstein numerical data and functional relationships in science and technology. New Series, Group III, Vol. 19, subvol. d2. Springer, Berlin
  • 3. Burzo E, Kirchmayr HR, Gnschneider KA Jr, Eyring L (eds) (1989) Handbook on the physics and chemistry of rare earths. Vol. 12, North-Holland Publishing Co, Amsterdam
  • 4. Buschow KHJ (1980) Rare earth compounds. In: Wohlfarth EP (ed) Ferromagnetic materials. Vol. 1, North-Holland Publishing Co, Amsterdam, pp 297–414
  • 5. Campbell IA (1972) Indirect exchange for rare earths in metals. J Phys F: Met Phys 2:L47–L50
  • 6. Cuong TD, Havela L, Sechovsky V, Arnold Z, Kamarad J, Duc NH (1998) Evolution of magnetism in Ho(Co1–xSix)2 compounds. J Magn Magn Mater 177/181:597–598
  • 7. Feller W (1961) An introduction to probability theory and its applications, 2nd ed. Vol. 1. Wiley, London, pp 175–189
  • 8. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D: Appl Phys 38:R123–R152
  • 9. Gicala B, Pszczoła J, Kucharski Z, Suwalski J (1994) Two Slater-Pauling dependences for Dy-3d metal compounds. Phys Lett A 185:491–494
  • 10. Gicala B, Pszczoła J, Kucharski Z, Suwalski J (1995) Magnetic hyperfine fields of Dyx(Fe-Co)y compounds.Solid State Commun 96:511–515
  • 11. Laves F (1939) Kristallographie der Legierungen. Naturwissenschaften 27:65–73
  • 12. Moreau JM, Michel C, Simmons M, O’Keefe TJ, James WJ (1971) Neutron diffraction study of the Ho-Fe system. J Phys Colloques 32:C1-670–C1-671
  • 13. Morozkin AV, Seropegin YuD, Gribanov AV, Barakatova JM (1997) Analysis of the melting temperatures of RT2 compounds (MgCu2 structure) (R = rare earth, T = Mn, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt) and RT2X2 compounds (R = La, Ce, Sm, Er; T = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Pt; X = Si, Ge). J Alloys Compd 256:175–191
  • 14. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71
  • 15. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69
  • 16. Sarkar D, Segnan R, Cornell EK et al. (1974) Crystal field in amorphous rare-earth-iron alloys. Phys Rev Lett 32:542–544
  • 17. Shimotomai M, Doyama M (1981) Quadrupole interaction of 57Fe in α-Sn. Hyperfine Interact 9:329–332
  • 18. Stoch P, Onak M, Pańta A, Pszczoła J, Suwalski J (2002) Synthesis and crystal structure of Dy(Fe-Co-Al)2. IEA Monographs, Vol. 5. Instytut Energii Atomowej, Otwock-Świerk (in Polish)
  • 19. Stoch P, Pszczoła J, Guzdek P, Chmist J, Pańta A (2005)Electrical resistivity studies of Dy(Fe1–xCox)2 compounds. J Alloys Compd 394:116–121
  • 20. Streltsov VA, Ishizawa N (1999) Synchrotron X-ray analysis of the electron density in HoFe2. Acta Crystallogr B 55:321–326
  • 21. Table of periodic properties of the elements (1980) Sargent-Welch Scientific Company, Skokie
  • 22. Tang YJ, Luo HL, Gao LF, Pan SM (1995) Mössbauer studies of R(Fe1–xMnx)2 (R = Tb, Ho) intermetallic compounds. J Mater Sci Lett 14:705–707
  • 23. Taylor KNR (1971) Intermetallic rare-earth compounds. Adv Phys 20:551–660
  • 24. Tohei T, Wada H (2004) Change in the character of magnetocaloric effect with Ni substitution in Ho(Co1–xNix)2. J Magn Magn Mater 280:101–107
  • 25. Uchima K, Nakama T, Takaesu Y et al. (2006) Transport properties of Y1–xRxCo2 (R = Er, Ho) in magnetic field. J Alloys Compd 408/412:368–370
  • 26. Van der Kraan AM, Gubbens PCM (1974) Mössbauer study of the ternary system Ho(Fe, Co)2. J Phys Colloques 35:C6-469–C6-472
  • 27. Van der Woude F, Sawatzky GA (1974) Mössbauer effect in iron and dilute iron based alloys. Phys Rep 12:335–374
  • 28. Wertheim GK (1964) Mössbauer effect: principles and applications. Academic Press, New York, pp 59–71
  • 29. Yagasaki K, Misashi M, Notsu S et al. (2004) Transport properties of Y1–xHoxCo2 in magnetic field. J Magn Magn Mater 272/276:E345–E346
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0014-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.