PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of computer codes for modeling corrosion product transport and activity build-up in light water reactors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The corrosion products are among the leading sources of radiation in primary coolant circuits of pressurized water reactors leading to prolongation of reactor down-time for routine maintenance entailing substantial loss of revenues. These deposits affect adversely coolant flow rates resulting in elevation of fuel and cladding temperature and become activated by high neutron flux in reactor core consequently creating high radiation field by accumulating in the out-of-core reactor components. In the case of light water reactors (LWRs), prevailing corrosion products include 59Fe, 99Mo, 56Mn, 58Co, and 60Co. The 56Mn is the leading corrosion product activity source during operation while cobalt isotopes dominate the activity after reactor shutdown. This paper presents a detailed discussion on some computer codes developed for prediction and transport of corrosion product activity in LWRs.
Czasopismo
Rocznik
Strony
263--269
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
autor
autor
  • Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan, Tel.: +92 3009 189301, Fax: +92 05822 960402, mrafique@gmail.com
Bibliografia
  • 1. Beal S (1972) Turbulent agglomeration of suspensions. J Aerosol Sci 3;2:113–125
  • 2. Beslu P (1978) A computer code PACTOLE to predict activation corrosion products in PWRs. In: Proc of the Int Conf on Water Chemistry of Nuclear Reactor Systems, Bournemouth. British Nuclear Energy Society, London
  • 3. Burrill K, Menut P (2001) Water chemistry of nuclear reactor systems 8. British Nuclear Energy Society, London
  • 4. Deeba F, Mirza Anwar M, Mirza NM (1999) Modeling and simulation of corrosion product activity in pressurized water reactors under power perturbations. Ann Nucl Energy 26;7:561–578
  • 5. Dinov K (1991) A model of crud particle/wall interaction and deposition in a pressurized water reactor primary system. Nucl Tech 94:281–285
  • 6. Dinov K (1997) Modeling of activity transport in PWR by computer code MIGA. Presented at the 1st Meeting of the IAEA Coordinated Research Program on Activity Transport Modeling, 5–9 May 1997, Toronto, ON
  • 7. Horvath LG (1991) Development of a corrosion product transport code in the primary circuits of nuclear power plants. VEIKI Report 93.92-077. Veiki Institute Budapest, Hungary
  • 8. IAEA (1987) Reactor water chemistry relevant to coolant-cladding interaction. IAEA-TECDOC-429. International Atomic Energy Agency, Vienna
  • 9. IAEA (1992) Coolant technology of water cooled reactors. Vol. 1. IAEA-TECDOC-667. International Atomic Energy Agency, Vienna
  • 10. Jaeger RG (1970) Engineering compendium on radiation shielding. Vol. 3. Springer-Verlag, New York
  • 11. Kang S, Sejvar J (1985) The CORA-II model of PWR corrosion product transport. EPRI-NP-4246, Westinghouse Electric Corp., Pittsburgh, PA, USA, Nuclear Technology Div
  • 12. Lee CB (1990) Modeling of corrosion product transport in PWR primary coolant. PhD Thesis, Nuclear Engineering Department, MIT, Massachusetts
  • 13. Mirza AM, Mirza NM, Mir I (1998) Simulation of corrosion product activity in pressurized water reactors under flow rate transients. Ann Nucl Energy 25;6:331–345
  • 14. Mirza NM, Rafique M, Hyder MJ, Mirza SM (2003) Computer simulation of corrosion product activity in primary coolants of a typical PWR under flow rate transients and linearly accelerating corrosion. Ann Nucl Energy 30:831–851
  • 15. Mirza NM, Rafique M, Mirza SM, Hyder MJ (2005) Simulation of corrosion product activity for nonlinearly rising corrosion on inner surfaces of primary coolant pipes of the typical PWR under flow rate transients. Appl Radiat Isot 62:681–692
  • 16. Nuclear Energy Education Research (2006) Technical progress report. Electrochemistry of water-cooled nuclear reactors. Pennsylvania State University, USA
  • 17. Rafique M, Mirza NM, Mirza SM (2005) Kinetic study of corrosion product activity in primary coolant pipes of a typical PWR under flow rate transients and linearly increasing corrosion rates. J Nucl Mater 346;2/3:282–292
  • 18. Rafique M, Mirza NM, Mirza SM (2009) Simulation and modeling of radioactivity build-up due to corrosion products in ion-exchanger and filters of a typical PWR. Radiochemistry 51;1:40–46
  • 19. Rockwell T III (1956) Reactor shielding design manual. National Technical Information Service, D. Van Nostrand Co., Inc., New York
  • 20. Song MC, Lee KJ (2003) The evaluation of radioactive corrosion product at PWR as change of primary coolant chemistry for long-term fuel cycle. Ann Nucl Energy 30;12:1231–1246
  • 21. US NRC (2003) Occupational radiation exposure at commercial nuclear power reactors and other facilities. United States Nuclear Regulatory Commission, Washington, DC
  • 22. Varovln JA, Eperin AP, Konstantinov YA, Sedov VM, Senin YV, Filippov YM (1983) Paper no. 23. In: Proc of the IAEA Specialists Meeting on Influence of Water Chemistryon Fuel Element Cladding Behaviour in Water Cooled Power Reactors’, 6–10 June 1983, Leningrad, USSR
  • 23.Zmitko M (1994) Investigation and modeling of activity transport in WER primary systems. In: Proc of the Int Symposium on Activity Transport in Water-Cooled Nuclear Power Reactors, 24–26 October 1994, Ottawa, Canada. AECL Report, RC-1334
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0014-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.