PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparison of selected natural radionuclide concentrations in the thermal groundwater of Mszczonów and Cieplice with deep well water from Łódź city, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple procedure using α and γ spectrometry for the determination of natural radionuclides in two Polish geothermal water samples from Mszczonów and Cieplice, as well as in deep well groundwater from the city of Łódź, was described. The 222Rn radionuclide was directly extracted from 10 cm3 water samples to a scintillator solution placed in scintillation vials and determined by an liquid scintillation (LSC) technique with α/β separation. The activity concentrations of three radium nuclides: 228Ra(228Ac), 226Ra(222Rn), 224Ra, as well as 210Pb and 228Th were measured by γ spectrometry with an HPGe detector after their preconcentration on hydrated MnO2. 210Po was deposited on a silver disc from dissolved MnO2 precipitate after γ-spectrometry analysis and measured by α spectrometry. The concentration of 210Pb in the examined samples was below the detection limit of the method (< 6.2 mBq/dm3), whereas activity of its decay product 210Po was in the range 0.35–1.4 mBq/dm3. Higher activities of 228Ra (46.7 mBq/dm3), 226Ra (67.8 mBq/dm3) and 224Ra (22.4 mBq/dm3) were observed for the deep well water in Łódź in comparison to those for geothermal water samples from Cieplice and Mszczonów. However, concentrations of all the measured radionuclides were below World Health Organization (WHO) reference activities (0.1 Bq/dm3 for 228Ra and 1 Bq/dm3 for 226Ra and 226Ra).
Czasopismo
Rocznik
Strony
181--185
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
autor
autor
autor
  • Institute of Applied Radiation Chemistry, Technical University of Łódź, 116 Żeromskiego Str., 90-924 Łódź, Poland, Tel.: +48 42 631 3195, Fax: +48 42 636 5008, henrybem@p.lodz.pl
Bibliografia
  • 1. Becker JS (2002) Inorganic mass spectrometry of radionuclides (invited review). Spectrosc Eur 14;6:8–16
  • 2. Becker JS (2003) Determination of long-lived radionuclides by ICP-MS and LA-ICP-MS (invited review). Spectrochim Acta B 58:1757–1784
  • 3. Becker JS (2005) ICP-MS and LA-ICP-MS for isotope analysis of long-lived radionuclides (invited review). J Mass Spectrom 242:183–195
  • 4. Becker JS (2010) Determination of long-lived radionuclides in nuclear, environmental and clinical samples by ICP-MS and LA-ICP-MS. In: Gross ML (ed) Chapter in: Encyclopedia of mass spectrometry. Vol. 5. Elemental and isotope ratio mass spectrometry. Elsevier, Boston
  • 5. Becker JS, Sela H, Dobrowolska J, Zoriy M (2008) Recent applications of isotope ratio measurements y ICP-MS and LA-ICP-MS on biological samples and single particles. J Mass Spectrom 270:1–7
  • 6. Bem H, Bem EM, Majchrzak I (1998) Comparison of two methods for 226Ra determination in mineral water. Nukleonika 43;4:459–468
  • 7. Bem H, Olszewski M, Kaczmarek A (2004) Concentration of selected natural radionuclides in the thermal groundwater of Uniejów. Nukleonika 49;1:1–5
  • 8. Bujakowski W (1999) Geothermal projects in Poland. echnika Poszukiwań Geologicznych Geosynoptyka i Geotermia 4/5:132–141 (in Polish)
  • 9. Chau ND, Michalec B (2008) Natural radioactivity in bottled natural spring, mineral and therapeutic waters in Poland. J Radioanal Nucl Chem 279;1:121–129
  • 10. Currie LA (1999) Detection and quantification limits: origins and historical overview. Anal Chim Acta 391:127–134
  • 11. Desideri D, Meli MA, Feduzi L, Roselli C, Rongoni A, Saetta D (2007) 238U, 234U, 226Ra, 210Po concentration of bottled mineral waters in Italy and their dose contribution. J Environ Radioact 94:86–97
  • 12. European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commum L330, 5 December 1998
  • 13. Gallup DL (2007) Treatment of geothermal waters for production of industrial, agricultural or drinking water. Geothermics 36:473–483
  • 14. Górecki W (2006) Atlas of geothermal resources of mesozoic formations in the Polish lowlands. AGH University of Science and Technology, Kraków
  • 15. Kępińska B (2003) Current geothermal activities and prospects in Poland – an overview. Geotherm 32:397–407
  • 16. Kępińska B (2003) Current state and prospects of geothermal energy implementation in Poland. Appl Energy 74:43–51
  • 17. Kozłowska B, Walencik A, Dorda J, Przylibski TA (2007) Uranium, radium and 40K in bottled mineral waters from Outer Carpathians, Poland. Radiat Meas 42:1380–1386
  • 18. Lund JW, Freeston DH (2001) World-wide direct uses of geothermal energy 2000. Geotherm 30:29–68
  • 19. Nowak W, Stachel AA (2004) Heat-generating geothermal plant in Poland – present and planned state. Czysta Energia 34:50–55 (in Polish)
  • 20. Pawlak Z, Rabiega G (2002) Comparison of inductively coupled plasma-mass spectrometry and radiochemical techniques for total uranium in environmental water samples. Environ Sci Technol 36:5395–5398
  • 21. Pietrzak-Flis Z, Kamińska I, Chrzanowski E (2004) Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland. Nukleonika 49;2:69–76
  • 22. Pietrzak-Flis Z, Suplińska MM, Rosiak L (1997) The dietary intake of 238U, 234U, 230Th, 232Th, 228Th, and 226Ra from food and drinking water by inhabitants of Wałbrzych region. J Radioanal Nucl Chem 222:189–193
  • 23. Przylibski TA, Dorda J, Kozłowska B (2002) The occurrence of 226Ra and 228Ra in groundwaters of the Polish Sudety Mountains. Nukleonika 47;2:59–64
  • 24. Przylibski TA, Mamont-Cieśla K, Kusyk M, Dorda J, Kozłowska B (2004) Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland). J Environ Radioact 75:193–209
  • 25. Regulation of the Polish Minister of Health (2000) Dz U (Law Gazette) no 82, item 937 from 4 October 2000 (in Polish)
  • 26. Rihs S, Condomines M (2002) An improved method for Ra isotope (226Ra, 228Ra, 224Ra) measurements by gamma spectrometry in natural waters: application to CO rich thermal waters from the French Massif Central. Chem Geol 182:409–421
  • 27. Skwarzec B, Strumińska DI, Boryło A (2001) The radionuclides 234U, 238U and 210Po in drinking water in Gdańsk agglomeration (Poland). J Radioanal Nucl Chem 250;2:315–318
  • 28. Skwarzec B, Strumińska DI, Boryło A, Falandysz J (2004) Intake of 210Po, 234U and 238U radionuclides with beer in Poland. J Radioanal Nucl Chem 261;3:661–663
  • 29. US EPA (1994) Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry. Method 200.8, Ohio
  • 30. US EPA (2002) Radionuclides in drinking water: a small entity compliance guide. US Government Publishing Office, Washington
  • 31. Vesterbacka P (2005) 238U-series radionuclides in Finnish groundwater – based drinking water and effective doses. STUK, Helsinki
  • 32. WHO (2006) Guidelines for drinking-water quality. Vol. 1. World Health Organization, Geneva
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0014-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.