PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positron annihilation in bioactive glass/poly(glycolide-co-L-lactide) composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composites made of bioactive glasses and resorbable polymers are promising biomaterials for bone tissue regeneration. In this study several types of composites produced from bioactive glasses, differing in chemical composition (A2 and S2) and poly(glycolide-co-lactide) (PGLA) were obtained. The resulting composite materials were investigated with positron lifetime spectroscopy and Doppler broadening of annihilation line. It was found that for the composites made of S2 bioglass the intensity of the third positron lifetime component coming from the positronium (Ps) annihilation decreased with increasing in volume fraction of bioglass particles exhibiting behaviour characteristic of microcomposites. For the composites produced from A2 bioglass, such a dependence was not found. The differences obtained may be connected with chemical composition of the bioglass and/or its crystallinity.
Czasopismo
Rocznik
Strony
79--83
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
autor
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 8370, Fax: +48 12 662 8458, Ewa.Dryzek@ifj.edu.pl
Bibliografia
  • 1. Bieliński DM, Ślusarski L, Dobrowolski O, Głąb P, Dryzek E (2004) Studies of filler agglomeration by atomic force microscopy and positron annihilation spectroscopy. Kautsch Gummi Kunstst 57:579–586
  • 2. Dębowska M, Rudzińska-Girulska J, Jezierski A et al. (2000) Positron annihilation in carbon black – polymer composites. Radiat Phys Chem 58:575–579
  • 3. Dobrzyński P, Kasperczyk J, Janeczek H, Bero M (2001) Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1. Copolymerisation of glycolide with L-lactide initiated by Zr(acac)4. Macromolecules 34:5090–5098
  • 4. Dryzek J (2005) Detection of positron implantation profile in different materials. Acta Phys Pol A 107:598–607
  • 5. Dryzek J, Quarles CA (1996) A spectrometer for the measurement of the Doppler broadening of annihilation line with efficient reduction of background. Nucl Instrum Methods Phys Res A 378:337–342
  • 6. Eldrup D, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58
  • 7. Hamielec AE, Eldrup M, Mogensen O, Jansen P (1973) Positron annihilation techniques (PAT) in polymer science and engineering. J Macromol Sci, Rev Macromol Chem Phys C 9:305–337
  • 8. Hautojärvi P, Pajanne E (1974) Positron annihilation in phase-separated and crystallized silicate glasses. J Phys C: Solid State Phys 7:3817–3826
  • 9. Hay JN, Shaw SJ (2004) Organic-inorganic hybrids – the best of both worlds? Europhys News 34:89–92
  • 10. Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 17:967–978
  • 11. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res A 374:235–244
  • 12. Kohls D J, Beaucage G (2002) Rational design of reinforced rubber. Curr Opin Solid State Mater Sci 6:183–194
  • 13. Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B (2000) Gel-derived materials of a CaO-P(2)O(5)-SiO(2) system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res 52:601–612
  • 14. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486
  • 15. Maurer FHJ, Welander M (1991) Positron annihilation in polyethylene and azidosilane-modified glass/polyethylene composites. J Adhes Sci Technol 5:425–437
  • 16. Pamuła E, Dryzek E, Dobrzyński P (2006) Hydrolytic degradation of poly(L-lactide-co-glycolide) studied by positron annihilation lifetime spectroscopy and other techniques. Acta Phys Pol A 110:631–640
  • 17. Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jérôme R (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13:1207–1214
  • 18. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5491–5510
  • 19. Wang J, Quarles CA (2003) Temperature dependence of the lifetime spectrum of rubber – carbon black composites. Radiat Phys Chem 68:527–529
  • 20. Wang YQ, Wu YP, Zhang HF, Wang B, Wang ZF (2004) Free volume of montmorillonite/styrene-butadiene rubber nanocomposites estimated by positron lifetime spectroscopy. Macromol Rapid Commun 25:1972–1978
  • 21. Winberg P, Eldrup M, Maurer FHJ (2004) Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy. Polymer 45:8253–8264
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0014-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.