PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive control of autonomous underwater vehicle based on fuzzy neural network

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an adaptive control method based on fuzzy neural network for Autonomous Underwater Vehicle (AUV). The Fuzzy Neural Network (FNN) could build the inverse model of AUV through on-line learning algorithm, which is free of fuzzy neural network structure knowledge and prior fuzzy inference rules. The adaptive controller for AUV based on FNN is proposed, and then the stability of the resulting AUV closed-loop control system is analyzed by Lyaponov stability theory. The validity of the proposed control method has been verified through computer simulation experiments.
Twórcy
autor
autor
  • Department of Electrical and Computer Engineering, Dalhousie University, Halifax, B3J 2X4, Canada, Zheng.Qin@dal.ca
Bibliografia
  • [1] Song X., Ye J., Wu L., „Integral sliding mode controller based on fuzzy logic for the heading control of the submersible vehicle”, ICICIC '06. First International Conference on Innovative Computing, Information and Control, 2006, pp. 183-186.
  • [2] Tangirala S., Dzielski J., „A variable buoyancy control system for a large AUV”, IEEE Journal of Oceanic Engineering, vol. 32, no. 4, 2007, pp. 762-771.
  • [3] FossenT.I., Blanke M., „Nonlinear output feedback control of AUV propellers using feedback form estimated axial flow velocity”, IEEE Journal of Oceanic Engineering, vol. 25, no. 4, 2000, pp. 241-255.
  • [4] HealeyA.J., Lienard D., „Multivariable sliding mode control for autonomous diving and steering of unmanned AUVs”,IEEE Journal of Oceanic Engineering, vol. 18, no. 7, 1993, pp. 327-339.
  • [5] Yoerger D.N., Slotine J.E., „Robust trajectory control of AUVs”, IEEE Journal of Oceanic Engineering, vol. 10, no.9, 1985, pp. 462-470.
  • [6] Choi S.K., Yuh J., „Experimental study on a learning control system with bound estimation for AUVs”, Underwater Robots, Norwell, MA: Kluwer, 1996, pp. 113-120.
  • [7] Ishii K., Fujii T., Ura T., „An on-line adaptation method in a neural network-based control system for AUVs”, IEEE Journal of Oceanic Engineering, vol. 20, no. 7, 1995, pp. 221-228.
  • [8] Jordan M.A., Bustamante J.L., „Guidance of AUVs with cable tug perturbations under fixed and adaptive control systems”, IEEE Journal of Oceanic Engineering, vol. 33, no. 4, 2008, pp. 579-598.
  • [9] Cavalletti M., Ippoliti G., Longhi S., „Switching adaptive control for a remotely operated vehicle”, American Control Conference, 2007, pp. 2799-2806.
  • [10] Kim H., Shin Y., „Design of adaptive fuzzy sliding mode controller using FBFE for UFV depth control”, SICEICASE, 2006, pp. 3100-3103.
  • [11] Kim H., Shin Y., „Design of expanded adaptive fuzzy sliding mode controller using FBFE for UFV depth control”, International Conference on Automation and Systems, 2007, pp. 2654-2657.
  • [12] Moattari M., Khayatian A., „A neural network controller for diving of a variable mass autonomous underwater vehicle”, 2008 SICE Annual Conference, 2008, pp. 1339-1344.
  • [13] Xu J., Zhang M., „Neural network modeling and generalized predictive control for an autonomous underwater vehicle”, 6 IEEE International Conference on Industrial Informatics, 2008 pp. 487-491.
  • [14] Jang J.S.R., „ANFIS: adaptive-network-based fuzzy inference system”. IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, 1993, pp. 665-684.
  • [15] Cho K.B., Wang B.H., „Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction”, Fuzzy Sets Systems, vol. 83, no. 3, 1996, pp. 325-339.
  • [16] Juang C.F., Lin C.T., „An online self-constructing neural fuzzy inference network and its applications”, IEEE Transactions on Fuzzy Systems, vol. 6, no. 1, 1998, pp. 12-32.
  • [17] Juang C.F., Lin C.T., „A recurrent self- organizing neural fuzzy inference network”, IEEE Transactions on Neural Networks, vol. 10, no. 4, 1999, pp. 828-845.
  • [18] Er M.J., Gao Y., „Robust adaptive control of robot manipulators using generalized fuzzy neural networks”, IEEE Transactions on Industrial Electronics, vol. 48, no. 6, 2001, pp. 1274-1278.[19] Wang J.S., Lee C.S.G., „Self-adaptive recurrent neurofuzzy control of an autonomous underwater vehicle”, IEEE Transactions on Robotics and Automation, vol. 11, no. 4, 2003, pp. 462-477.
  • [19] Wang J.S., Lee C.S.G., „Self-adaptive recurrent neurofuzzy control of an autonomous underwater vehicle”, IEEE Transactions on Robotics and Automation, vol. 11, no. 4, 2003, pp. 462-477.
  • [20] Wang J.S., Lee C.S.G., „Structure and learning in selfadaptive neural fuzzy inference systems”, International Journal of Fuzzy Systems, vol. 2, no. 1 2000, pp. 12-22.
  • [21] Er M.J., Gao Y., „Robust adaptive control of robot manipulators using generalized fuzzy neural networks”, IEEE Transactions on Industrial Electronics, vol. 50, no. 3, 2003, pp. 620-628.
  • [22] Gao Y., Er M.J., „Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems”, IEEE Transactions on Fuzzy Systems, vol. 11, no 4, 2003, pp. 462-477.
  • [23] Yuh J., „Underwater Robotic Vehicles: Design and Control?”, USA: TSI Press Series Networks, 1995, pp. 15 40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0012-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.