PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The efficiency of the inference system knowledge strategy for induction motor linear speed control of an urban electric vehicle

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a real induction vehicle motor speed estimation technique, based on the fuzzy logic inference system knowledge for electric vehicle safety based on differential electronics as essential element for two wheeled electric vehicle driving which utilize the two back separately induction motors for motion. The aim object of the fuzzy logic controller is to give more and more safety for the electric propulsion system safety during motion against road topology. Our electric vehicle fuzzy inference system control’s simulated in Matlab SIMULINK environment, the results obtained present the efficiency and the robustness of the proposed control with good performances compared with the traditional PI speed control, the FLC induction traction machine presents not only good steady characteristic, but with no overshoot too. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve.
Twórcy
autor
Bibliografia
  • [1] Poursamad A., Montazeri M., ”Design of Genetic-Fuzzy Control Strategy for Parallel Hybrid Electric Vehicles““, Control Engineering Practice , DOI:10.1016/j.conengprac.2007.10.003.
  • [2] Pien Yang Y., Pin Lo C., “Current Distribution Control of Dual Directly Driven Wheel Motor for Electric Vehicles”, Control Engineering Practice , vol.16, 2008, pp. 12851292.
  • [3] Hartani K., Bourahla M., Miloud Y., ”Electric Vehicle Stability Improvement Based on Anti-Skid Control Using Behaviour Model Control”, Electro motion Cluj-Napoca, vol. 14, part 4, pp. 209-171.
  • [4] Nasri A., Hazzab A., Bousserhane I.K., Hadjeri S., Sicard P., "Two Wheel Speed Robust Sliding Mode Control For Electric Vehicle Drive", Serbian Journal of Electrical Engineering , vol. 5, no. 2, November 2008 , pp. 199-216.Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010.
  • [5] Allaoua B., Laoufi A., Nasri A.,"Intelligent Controller design of DC motor speed control based on Fuzzy Logic Genetic Algorithms Optimisations", Leonardo Journal of Sciences, issue 13, December 2008, pp. 90-102.
  • [6] Rehman H., Dhaoudi R., “A fuzzy Learning-Sliding Mode Controller for Direct Field Oriented Induction Machines”, Neurocomputing, Elsevier, vol. 71, 2008, pp. 2693-2701.
  • [7] Aissaoui Ghani A., Abid M., Abid H., Tahour A., Zeblah A.,"A Fuzzy logic Controller for Synchronous machine”, Journal of Electrical Engineering , vol., 58, no. 5, 2007, pp. 285-290.
  • [8] Yoichi H., Yasushi T., Yoshimasa T., “Traction Control of Electric Vehicle: Basic Experimental Results Using the Test EV UOT Electric March". IEEE Transactions on Industry Applications , vol. 34, no. 5, September/October 1998, pp. 1131-1138.
  • [9] Kim I., ” Non Linear State of Charge Estimator for Hybrid Electric Vehicle Battery”, IEEE Transactions , vol. 23, no. 4, July 2008, pp. 2027-2034.
  • [10] Tahour A., Hamza A., Aissaoui A.G.,”Speed Control of Switched Reluctance Motor Using fuzzy Sliding Mode”, Advances in Electrical and Computer Engineering , vol. 8(15), no. 1(29), 2008.
  • [11] Shi G., Jing Y., Xu A., Ma J.,“Study and Simulation of Based fuzzy logic parallel Hybrid Electric Vehicles”. In: Proceeding of the 6 th international Conference on intelligent System Design and Applications (ISDA 06) , IEEE 2006, vol. 1, pp. 280-284.
  • [12] Chen C.Y., Li T.-H.S., Yeh Y.C.,"EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots", Information Sciences, vol. 179, issue 1-2, 2009, pp. 180-195.
  • [13] Hazzab A., Bousserhane I.K., Kamli M., Rahli M., “New Adaptive fuzzy PI-Sliding Mode Controller for Induction Machine Speed Control”. 3rd IEEE International Conference on Conference on Systems, Signals & Devices SSD'05, Tunisia, 2005.
  • [14] Lin C.M, Hsu C.-F., “Adaptive Fuzzy Sliding-Mode Control for Induction Servomotor Systems”, IEEE Transactions on Energy Conversion , vol. 19, no. 2, June 2004, pp. 362-368.
  • [15] Keyun C., Alain B., Walter L., ”Energetic Macroscopic Representation and inversion-based control Application to an Electric Vehicle With An Electrical Differantial”, Journal of Asian Electric Vehicles ,vol. 6, no. 1, June 2008, pp. 1097-1102.
  • [16] Allaoua B., Abderahmani A., Gasbaoui B., Nasri A., “The Effeciency of particle Swarm Opti;iwqtion Applied On Fuzzy Logic DC Motor Speed Control”, Serbian Journal of Electrical Engineering , vol. 5, no. 2, November 2008, pp. 247-262.
  • [17] Haddoun A., Benbouzid M., Diallo D., “Modeling, Analysis, and Neural Network Control of An EV Electrical Differantial”, IEEE Transactions , vol. 55, no. 6, June 2008, pp. 2286-2294.
  • [18] Pin Yang Y., Pin Lo C.,”Current Distribution Control of Dual Directly Driven Wheel Motors for Electric Vehicles”, Control Engineering Practice, vol. 16, 2008, pp. 1285-1292.
  • [19] Larminie J., Lowry J., Electric Vehicle Technology Explained, John Wiley & Sons Ltd., England, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0012-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.