
Abstract:

1. Introduction

This paper presents a proposal for structuring real-time
programs in a way that improves their reliability. Basically,
it consists of five constructs that have been designed after
the model of classical "structured programming", together
with a generalized way of dealing with resources. After so-
me considerations about reliability these constructs are
presented and explained. Then, a test implementation for
two different programming languages and operating
systems is briefly described. Finally, some pieces of code
give an impression of the character of the method.

Keywords: real-time systems, real-time programming,
structured programming, reliability, graphical repre-sen-
tation.

In the dawn of the upcoming era of mechatronics,
research concerning real-time systems is becoming a cen-
tral issue of computer science. A broad variety of pro-
blems is discovered that need to be solved. Fortunately,
real-time systems have already been the subject of inten-
sive research for decades in the context of electrical and
process engineering, and many useful research results as
well as applicable engineering traditions have been accu-
mulated.

One area has been of paramount importance in all the
discussions over the years: reliability of real-time sys-
tems. Of course, there is a great number of aspects that
have to be taken into account during the construction of
systems with this desirable property. System structure,
hardware quality, design methods, simulation, program-
ming languages and guidelines, algorithms and opera-
ting systems are just the most important ones. In his tea-
ching, the first author has tried to do justice to as many
of these as possible in order to make students aware of
the fact that all of them have to be taken into account if
a resulting system is to deserve the attribute "reliable".

One part of this effort was in 2004 a joint student
project [1]. In this project, a simple and easy to learn me-
thod for structured design of reliable real-time systems
has been implemented and applied for the first time. Its
theoretical foundations have been described before at
several occasions [2], [3], [4], [5]. In contrast to the
usual approaches to (formal) specification, it is concep-
tually simple and easy to use. In particular, it is indepen-
dent of existing programming languages and operating
systems. Besides, it can be implemented with relatively
little effort and is - after all - directly related to the real-
time domain.

In the following two sections the theoretical founda-
tions of the method are briefly presented. Then, the test
implementation for the programming languages PEARL
[6], [7] and "Real-Time C" [8] is described and, finally,
its application is illustrated by means of programming
examples.

2. Underlying Design Criteria

As mentioned above, much work has been done over
the past decades with respect to reliability of software
(and related properties). As an example (and because it
brings some structure into the variety of aspects related
to this topic), the work of Laprie [9] shall be used here.

According to a taxonomy he proposes, "reliability" is
one attribute (out of six) of a more general property of
technical systems: "dependability". He defines it as: "the
ability to provide continuity of service". Dependability,
in turn, has been defined as: "the extent to which the
system can be relied upon to perform exclusively and cor-
rectly the system task(s) under defined operational and
environmental conditions over a defined period of time,
or at a given instant of time" [10].

The other five attributes of dependability are: avail-
ability, safety, confidentiality, integrity and maintain-
ability. However, in order to achieve safety, confidenti-
ality and integrity, it is necessary to apply more means
than those that are provided by software technology (in
a strict sense). But of the remaining three (of the above-
mentioned six) attributes, reliability and maintainablity
are well within the reach of software technology. So,
what can be done about them? Following Laprie's line of
thought, reliability is usually impaired by system failures,
resulting from errors which, in turn, are consequences of
faults. Having stated this, after some elaborations about
fault classes and their respective properties and causes,
he arrives at the following statement: "Software, and
thus design faults, are generally recognized as being the
current bottleneck for dependability in critical applica-
tions, be they money- or life-critical. A simple reason is
that the computer systems involved in such applications
are tolerant to physical faults".

The last sentence is particularily interesting insofar
as it expresses the observation that - in contrast to the
situation some decades ago - in the meantime hardware
has obviously reached a satisfactory state.

Design engineers, however, now want to know what
can be done to avoid such software design faults. For this
purpose, the following means are recommended:

a) fault prevention,

2.1. General Considerations

A SIMPLE AND COST-EFFECTIVE METHOD TO

CONSTRUCT RELIABLE REAL-TIME PROGRAMS

Peter F. Elzer, Martin Gollub, Sven Trenkel

Received 4 ; accepted 11 .th May 2009 September 2009th

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

Articles28

b) fault tolerance,
c) fault removal,
d) fault forecasting.

From such considerations Laprie basically derives the
necessity of extending complete existing software deve-
lopment models in such a way that they provide such
means and thus are appropriate for the development of
reliable software systems. However, such an approach in-
cludes a great number of individual measures and there-
fore has not been chosen by the authors.

The presented method is merely intended as a contri-
bution to the reduction of some of the most pressing pro-
blems connected with aspects of parallelism in programs
written in procedural languages. One of them is the ob-
servation that even program developers, who are very
competent as far as "classical" algorithms (e.g., in nume-
rical mathematics or numeric control) are concerned, run
into difficulties when they have to solve problems of co-
ordination of parallel processes using the usually avail-
able means (e.g., free manipulation of processes, signals,
semaphores, etc.).

It appears, therefore, obvious to separate these tasks
from the algorithmic parts of a program, and to provide
program developers with higher level constructs for
a number of frequent cases that are easy to understand
and fit for easily useable tools like, e.g., macroprocessors
or interactive graphical tools. This means that the "des-
criptional level" has to be above that of usual program-
ming languages. In particular, their functionality concer-
ning coordination of processes or handling of resources
should not replace the respective (traditional) mecha-
nisms provided by existing operating systems, but rather
build upon and use these. Finally, they have to be con-
ceptually simple and suitable for a graphical notation.

From such an approach the following contributions to
the abovementioned means can be expected:
a) will be a

, because:
a1)) should

have (and the number of faults
is basically proportional to the number of
LOSC),

a2) the
(again the number of errors in a piece of soft-
ware increases with increasing complexity),
and

a3) there is a

(specialists normally make less errors in their
domain than "allrounders").

b) can be supported by mechanisms for
and in the software

components. In the first place, this can be achieved
by means of a comprehensive mechanism for excep-
tion handling.

Derived from experience in industry, an additional
requirement is the following: due to the long life-expec-
tancy of modern embedded systems, any method should
be able to survive several generations of software sys-

2.2. Possible Benefits of the Proposed Method

Fault prevention enhanced by reduction of
the number of programming errors

less Lines Of Source Code (LOSC
to be written

complexity of programs is reduced

reduction of design complexity
by the separability of development tasks

Fault tolerance
error detection error recovery

tems. Usually, it is attempted to achieve this goal
by means of standardization. However, experience has
shown that it is not possible to standardize any com-
ponent of or tool for the development of computer sys-
tems over more than a few years or outside a limited area
of applications. Therefore, the proposed method has to
be of a sufficiently high level and - as already mentioned
above - independent of any programming language, ope-
rating system or computer hardware.

It turned out that a generalization of the principles
of "structured programming" fulfils these criteria. For
reasons of completeness the basic concepts of that tech-
nique shall be briefly presented here.

One of the real breakthroughs in classical program-
ming was the development of "structured programming"
(as, e.g., advocated for by Parnas [11]) in the 1960ies
and early 1970ies. One of the most important results of
the respective research was the discovery that the control
flow of even the most complex sequential programs can -
in principle - be described by very few basic constructs.
One of the most popular and useful graphical represen-
tations of these constructs are the diagrams that have
been proposed by Nassi and Shneiderman in the early
1970ies [12]. Basically they visualize the fact that any
sequential program can be represented by a linear se-
quence of "structure blocks", each of which represents
one of these constructs.

One of various representations of these diagrams is
shown in Fig. 1. As structure blocks it uses the code-
sequence, the repetition of a code-sequence under a cer-
tain condition, the execution of a number of code-se-
quences depending on certain conditions, and the alter-
native execution of two code-sequences.

It is certainly true that in the meantime "object-
oriented programming" has helped to eliminate many of
the problems and risks created by careless procedural
programming. But due to certain other inherent problems
object-oriented programs cannot always reliably guaran-
tee the necessary response times for real-time systems
(cf., e.g., Zalewski [13]). "Conventional" programs will,
therefore, still be essential components of embedded
systems for a long time to come.

2.3. "Classic" Structured Programming

Fig. 1. Nassi-Shneiderman Diagrams.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

Articles 29

Experience has shown that mostly the operating sys-
tems which are appropriate for real-time applications dif-
fer considerably as far as the functionality of the concrete
elements for this purpose are concerned. The simplest
example may be that some support semaphores, others
still rely upon "signals" or "events". This may mean that
an application has to be completely redesigned once it
has to be ported from one operating system to another -
with all the consequences of errors, retesting, etc.

Therefore, one basic principle of the proposed method
is to refrain from explicitely using any of the known basic
mechanisms for process interaction and manipulation,
but just to express "wishes" to an operating system regar-
ding the required behaviour of processes. The designer of
the preprocessor (who usually knows better how to exploit
the mechanisms of the particular OS than an application
specialist) can then provide the most appropriate, reliable
and efficient implementation. The application designers -
who, in turn, normally are not real experts as far as details
of the operating systems are concerned - can then use
these mechanisms and rely on their proper functioning.

On the basis of these considerations five constructs
have been identified. Three of them are related to the
handling of parallel processes:
1) the ,
2) , and
3) the p .

The other two deal with the use of resources:
4) the and
5) .

These concepts are described in detail in the following
sections.

In Subsection 3.1.1 the term "protoprocess" (PPC) has
been introduced, denoting a self-contained "unit of pa-
rallelism", i.e., a piece of code that may eventually (but
not necessarily) be executed in parallel to other PPCs.
It might also be regarded as an analogy to a "program mo-
dule" (which is usually understood as a "unit of compi-
lation"). It consists of three components:
1) the code-sequence to be executed, together with its

local data;
2) the "resource claim", i.e., a list of all those virtual

resources that may eventually be needed during the
execution of the PPC; if a resource is used in the code
sequence that has not been listed here, this is regar-
ded as an error and, e.g., causes an error message of
the preprocessor;

3) all exception handlers that may eventually be neces-
sary to cope with the exceptions that may be raised
during execution of the PPC (one of these may, e.g.,
be "time elapsed"); it is not allowed not to handle an
exception.

The proposed graphical notation for a protoprocess
(Fig. 2) is that for a code sequence (cf. Fig. 1), comple-
mented by the resource claim.

3.1.4. The Proposed Concepts

protoprocess
structured exception handling

rocess cluster

synchronization block
integrated signalling

3.2. The Protoprocess

3. Structured Real-Time Programming

One property of the abovementioned "structure
block" appears to be of particular interest to the design of
systems with parallel processes: the "principle of self-
contained jobs". In classic structured programming it ba-
sically means that any significant step in the progress of
a program’s execution can only be started after its prede-
cessor has been completely finished and all "side effects"
been taken care of.

Applied to systems with parallel processes this prin-
ciple could be extended insofar as to mean that a piece of
program can do its job "without looking to the left or to
the right". In particular, it does not explicitely interfere
with the dynamic behaviour of other such pieces of code
(e.g., by suspending or terminating them) but just emits
signals that may be interpreted in such a sense by other
"autonomous" pieces of code. In turn, it reacts to such
signals in an appropriate way - specified by the designer.
On the other hand, it has to be able to rely upon its de-
signer to have provided all necessary resources for its nor-
mal functions and/or rules for dealing with unexpected
events.

This property appears to be particularly useful in dis-
tributed systems, in systems consisting of components
written in different programming languages, or in systems
containing active hardware components. A (software) de-
signer, constructing such a component, needs only to ma-
ke sure that all necessary resources are available when the
component becomes active and to provide rules for dea-
ling with all possible exceptions he knows of (when desig-
ning the component), but he need not be concerned
about the behaviour of other components.

Such a (self-contained) piece of code together with
references to all the (static and dynamic) resources it may
eventually need during its execution shall in the following
be called "protoprocess".

Based on research in operating systems, it can be
shown that the concept of a "resource" (that is usually
meant to comprise physical entities like devices or data
buffers) can be generalized to include "consumeable re-
sources" like, e.g., signals, interrupts, or events (like
"buffer full"). As a consequence, they may be treated alike
with respect to their reservation and use, resulting in a re-
duction of the number of mechanisms for the administra-
tion of resources.

A further reduction of the number of concepts - and
thereby simplification - of the proposed method can be
achieved by the introduction of the notion of the "virtual
resource". Such a virtual resource can either be a real
(permanent or consumeable) resource or one particular
access right to a real resource [14]. One purpose of this
approach is the possibility to separate the design of the
real-time program proper from the construction of device
handlers that might, e.g., allow prioritized access of pro-
cesses to certain critical real resources.

3.1. General Principles
3.1.1. The Principle of the "Self-Contained Jobs"

3.1.2. The Principle of Virtual Resources

3.1.3. Independence of Operating System Properties

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

Articles30

A proposed alphanumeric syntax is:
ppc-declaration ::= ppc-name [formal-

resource-list] [complete-code] where "complete
code" denotes the program code together with the neces-
sary exception handlers (cf. S2, S3, S4) and "ppc-name" is
the (user-defined) name by which this protoprocess can
later be referenced in the program for the purpose of
activating it (cf. S7). The term "formal-resource-list" has
a similar meaning as the "formal parameters" in a proce-
dure declaration, i.e., the actually used resources are only
inserted at the time of activating the protoprocess - like
the actual parameters during a procedure call. This also
implies that the code of a protoprocess can be activated
several times with a different set of virtual resources - if
the underlying system allows this.

Careful readers may have observed that the text in the
graphical notation in Fig. 2 (like in some following ones)
does not exactly match the proposed alphanumeric syn-
tax. It is the opinion of the authors that this is not ne-
cessary, because - like in classic structured programming -
the proposed concepts (as visualized by structograms)
can be implemented in slighty different ways in different
programming languages. Therefore, the graphical symbols
cannot represent a really binding syntax. They are rat-
her a "graphic shorthand" for fairly complex concepts.
Should, therefore, the more concrete alphanumeric syn-
tax in this paper differ from that used in the graphic sym-
bols, this has no technical meaning.

With regards to the proposed alphanumeric syntax
a similar caveat holds: during the development and im-
plementation of a programming language it quite often
happens that the syntax of the original proposal (tho-
roughly as it may have been conceived) meets difficulties
when implementing it for the first time and therefore will
have to be modified. A really consolidated and stable syn-
tax usually only emerges after a few test implementations
have been undertaken and their results fed back into the
design of the language (maybe through an appropriate
committee).

Today, real-time programs are mostly parts of embed-
ded systems and, therefore, during operation normally
not accessible to human intervention in cases of distur-
bances or malfunctions. Hence, it is particularly impor-
tant to provide a mechanism to cope with irregular events
or "exceptions".

Fortunately, exception handling mechanisms have al-
ready been included very early in general-purpose pro-
gramming languages like, e.g., in PL/I, ALGOL 68, or Ada.

Fig. 2. Proposed graphical notation for a protoprocess.

S1 task claim
taskend

3.3. Structured Exception Handling

A particularly comprehensive and consistent proposal for
exception handling in programs was published by
Goodenough as early as 1975 [15] and is still valid. It has,
therefore, been used as a basis for the purposes of this
proposal.

As a detailed description would by far exceed the
framework of this paper, Fig. 3 (left part) illustrates the
basic principle: the designer of a real-time system can
specify in an "exception handler" which action shall be
taken in case a certain exception occurs during the exe-
cution of a process P. After completion of that action the
original process can either be
- at the point of disturbance, whereby an

empty exception handler means that the exception is
ignored,

- from the beginning, or
- .

It can also
- until the cause of the exception disappears, and

continue at this point. This may, e.g., be the case
when a certain resource becomes available again, the
temporary unavailability of which has caused the
exception. Wait can also be temporarily bounded for
other reasons, as shown in Subsection 3.7.1.

Of course, one might argue that this basically repre-
sents the functionality of a classic "semaphore" [16] and
it would therefore be better to use this instead of the
somewhat unusual mechanism proposed in this paper.
However, this would be a violation of the principle descri-
bed in 3.1.3: independence of operating system proper-
ties. If, e.g., an operating system does not support sema-
phores, the mechanism described above could be imple-
mented in a different way and still look the same in the
application program.

A proposed alphanumeric syntax is the following:

complete-code ::= main-code [exception-
handling-list] .

continued

repeated
aborted

wait

S2 begin
exend end

Fig. 3. Structured exception handling.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

Articles 31

S3

S4 on

continue | repeat | abort | wait

3.4. The Process Cluster

exception-handling-list ::= exception-handling-
clause [{ , exception-handling-clause } . . .]

exception-handling-clause ::= exception-name
[(exception-handler)]

{ }

The functionality of this construct can also be repre-
sented by a graphical notation (Fig. 3, right part) in a rat-
her straightforward way. For reasons of economy of space,
the figure had to be somewhat simplified. The rectangles
(1 to n) shaded in grey represent the exception handlers
together with their respective termination commands
(continue, etc.).

Experience has shown that the proper coordination of
parallel processes is an extremely demanding task for hu-
man designers and, therefore, very error-prone. Hence, it
appears to be appropriate to sacrifice some flexibility in
favour of predictability and simplicity.

A very early proposal has been the "fork-and-join"
mechanism [17] that also appears in the form of the
"parallel clause" in ALGOL 68 [18] and later in OCCAM
[19]. Based on this concept the – error-prone - constructs
for independent activation and termination of individual
processes (like in nearly all known real-time program-
ming languages) can be replaced by a "parallel clause" or
"process cluster". By now, this is also widely known under
the name of "structured parallelism".

The process cluster can be represented by means of
a graphical notation, as shown in Fig. 4. The represen-
tation might be criticized for implying sequential instead
of parallel execution of the protoprocesses, but its design
had to be a compromise between rigour, readability, and
the necessity to fit into nested structure diagrams.

A proposed alphanumeric syntax for this mechanism is
the following:

S5 parallel parend

S6

S7 execute with
priority

ppc-name
actual-resource-list

prio-
rity-specification

3.5. The Synchronization Block

parallel-clause ::= ppc-activation-list

ppc-activation-list ::= ppc-activation [{, ppc-
activation} . . .]

ppc-activation ::= ppc-name [actual-
resource-list] [priority-specification]

where denotes the name of a protoprocess,
is the list of resources the ppc is

actually using during its execution as a process, and
a value for the priority of that process

after its activation.

In the form described in this paper, the parallel state-
ment block can only include execute statements. Of cour-
se, one could imagine that it might as well directly inclu-
de ppc-declarations. In such a case, these would not even
need a ppc-name any more. However, such a solution
would require that the entire construct be written in the
same programming language. One would lose the possibi-
lity of putting together a system from components written
in different programming languages or even implemented
as separate hardware (as e.g. mentioned in 3.1.1).

It turned out that all cases of access to resources can
be expressed by a construct that operates like a "critical
section" with the modification that a set of exception
handlers (cf. 3.3) specifies what is to happen if a resource
is unavailable, breaks down, is requested by another pro-
cess with higher priority, etc. According to the considera-
tions in Section 3.1.2 this holds for all types of virtual
resources.

By means of proper rules it can also be made sure that
resources are released in an appropriate way after their
use. Compliance with these rules can even be checked
before runtime. Thereby, many very frequent program-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

Fig. 4. Strictly controlled parallelism.

Articles32

Journal of Automation, Mobile Robotics & Intelligent Systems

ming errors and runtime problems can be avoided like,
e.g., deadlocks that result from blocking and releasing
resources in the wrong order. It should be mentioned that
all resources are released if the demand block cannot be
executed because one resource is not available.

Fig. 5 illustrates this behaviour and shows the respec-
tive graphical notation. As far as the choice of the key-
word "demand" is concerned, it should be noted that it is
a consequence of the underlying concept of "virtual re-
sources" (cf. 3.1.2). In this case it means that an indivi-
dual programmer (e.g., in a design team) cannot reserve
a resource for exclusive use without any precautions –
and, thereby, eventually interfere with the system’s re-
source administration mechanism, or with a safety-orien-
ted allocation strategy that has been agreed upon in
advance. He has to make sure that he has the (access)
right to do so.

A proposed alphanumeric syntax is the following:

resource-reservation ::= resource-list
[main-code]

A frequent class of runtime problems in multi-process
systems is caused by the fact that a process waits for the
completion of an action of another process which, in turn,
is interrupted by still another process just before it can
signal the completion of that action. Even in the case that
the processes communicate correctly by means of sema-
phores, there may be unnecessary delays for the waiting
process.

One reason for this problem is that - despite of the fact
that correctly implemented semaphore operations proper
are uninterruptible - the execution of the program, con-
taining these operations, can be interrupted just before
the statement containing the semaphore operation is
reached. It, therefore, appears appropriate to introduce
a kind of "higher-level uninterruptiblity" of the code se-
quence containing the release of a signal.

These considerations led to the definition of another
construct, the "integrated signalling" (Fig. 6). It is speci-
fied as follows: if a certain code sequence has been suc-
cessfully completed, a signal is emitted ("a consumable
resource is created"). This can be consumed like any other

S8 demand
free

3.6. Integrated Signalling

resource by other processes using the demand statement.
The behaviour of this construct is comparable to the unin-
terruptibility of the classical semaphore operation - but
on a higher level. Emit enters a code section only if the
consumable resource does not currently exist. The resour-
ce is created when "emend" is executed.

The proposed alphanumeric syntax is:

signal-emission ::= signal-list [main-code]

One of the most important features of real-time pro-
grams is their ability to cope with the fact that the time
allowed for the execution of a process is running out, or
that something has to be done if a process has waited too
long for the availability of a resource. The following two
examples shall illustrate how this can be achieved with
the proposed constructs.

In both cases it is assumed that the underlying opera-
ting system contains a mechanism, e.g., called "timer",
that can be set by the program and emits a signal after
this preset time interval has elapsed.

The first example (Fig. 7) illustrates the case that the
execution time of a process for some reason exceeds the
allowed limit.

The second example (Fig. 8) shows how the case can
be handled when a resource does not become available
after a certain time and some alternative action has to be
taken.

Fig. 6. Signalling the completion of a code sequence.

S9 emit
emend

3.7. Potential of the Proposed Constructs
3.7.1. Treatment of Deadlines and Timeouts

VOLUME 4, N° 1 2010

Fig. 5. Use of resources.

Articles 33

Journal of Automation, Mobile Robotics & Intelligent Systems

Fig. 7. Supervision of process timeout.

Fig. 8. Quit waiting for a resource after a predefined time
interval.

3.7.2 Reaction to Emergency Conditions
A thorough analysis of the potential of such a com-

plete exception handling mechanism shows that it can
compensate the presumed rigidity of the parallel clause.
A combination of both constructs results, therefore, in
a mechanism - the "emergency group" - capable of des-
cribing practically all possible dynamic structures in real-
time systems in a very flexible way. Nevertheless, it leads
to a predictable behaviour of the program system.

The underlying principle is that the processes of
a computing system controlling a technical system can
basically be divided into three classes:

processes which always have to run - whatever
happens to the technical system;

processes which have to be terminated in case of
an emergency (e.g., breakdown of a vi-
tal component of the technical process
under supervision), because they are
either useless or even constitute a risk
and, therefore, all have to listen to the
same exception
(e.g., temperature too high) and react

Class 1

Class 2

globally triggered

by terminating them-selves, after
which their parallel clause is terminated
as well and the processes of class 3
start;

processes which are designed to deal with this
emergency and, therefore, have to be
activated in that case.

These classes then form three separate process clus-
ters that are grouped according to the principle shown in
Fig. 9:

contains the processes of class 2,
equipped with exception handlers that
first deal with the exception raised in
that particular case of emergency and
then finish with "abort";
contains the processes of class 3, which
are activated in that case and terminate
after the emergency has been dealt
with.

Clusters a and b are then surrounded by a "repeat
block" that makes sure that the processes of class 2 are
reactivated after the disappearance of the emergency.

finally contains the processes of class 1
together with this repeat block.

In Fig. 10 it is tried to give an impression how this
construction can be realized using the proposed concepts.
For reasons of limited space it has been restricted to pro-
cess cluster c, the repeat clause, containing clusters a and
b, and one class 2 process.

This structure makes sure that reactions of the pro-
gram system to emergencies in a technical system under
supervision and control are planned in advance in a clear
and consistent manner. Thus, an important criterion for
the design of robust program systems is fulfilled.

At runtime, the structure guarantees that no unplan-
ned or uncoordinated (re)actions onto the technical pro-
cess can be initiated by computing processes that were
left in an undefined state at the time of occurrence of the
emergency. This fulfils another important criterion for
predictable and reliable system behaviour.

Of course, in practical applications there may be more

Class 3

Cluster a

Cluster b

Cluster c

VOLUME 4, N° 1 2010

Fig. 9. The Emergency Group.

Articles34

Journal of Automation, Mobile Robotics & Intelligent Systems

than one "fatal exception" in the system and therefore
the pre-planned reactions will have to be more complex
than in this example. However, the authors hold that the
rigidity of the proposed method will be beneficial in terms
of reliability of the resulting system because it will force
designers to plan the dynamic structures much more in
advance than it is usually done today. In particular, there
will be much less ad-hoc reactions that are patched into
the code "in hindsight" and which are therefore extremely
error-prone. Thus, they trust, the proposed method will
considerably contribute to the reliability of the resulting
system.

Finally, it is necessary to make sure that a real-time
system for critical applications is free of deadlocks. It is
known that deadlock detection and prevention mecha-
nisms can be applied to a program system if each process
indicates its intended use of resources prior to its execu-
tion. The resource claim, introduced in Section 3.2, can be

�

�

�

Declarations of other protoprocesses

Fig. 10. The Principle of the Emergency Group in Graphical
Syntax.

3.7.3. Deadlock Prevention

used for this purpose (cf. Fig. 2). On this basis a deadlock
prevention technique can be integrated in the proposed
method. It is based on a proposal by Habermann [20],
that can be summarized as follows:

• arrange all resources that will be needed during
the execution of a program system in a linear
order,

• use them only in this order, and
• release them in reverse order.

In order to achieve this, the declaration of a protopro-
cess has to contain a list of all resources that will even-
tually be needed during its execution in the form of a re-
source-claim. In a demand-clause, then, of course only
those resources, that are actually needed, are listed in the
same order. By means of this rule, already a preprocessor
can check whether this correct sequence is followed, and
can eventually even enforce that the resources are relea-
sed in the correct order. As a result, the application of the
design method presented in this paper practically guaran-
tees that the resulting real-time systems are free of dead-
locks. This is a very important aspect for real-time systems
that have to work autonomously.

Of course, the authors are aware of the fact that this is
a very strict rule, which cannot always be followed easily.
But sometimes the only remaining alternative might be an
unreliable system behaviour - and that should of course
be avoided. However, if a system designer bears that rule
in mind already during early states of system development
and tries to avoid such situations, it can lead to a better
overall architecture of the system.

As a feasibility test, the proposed constructs have
been implemented in the framework of a student project
[1], comprising two persons and approximately three
person months. Although this narrow time-frame and
the shortage of financial means required some technical
compromises regarding the completeness of the imple-
mentation, the results can be regarded as a success.

The ideal implementation of the proposed method
would have been an interactive programming tool on
a graphical basis. But this would have required much too
high an effort. Therefore, a text-oriented method on the
basis of a macropreprocessor was chosen. Because the
preprocessor available for "C" was not powerful enough,
"M4"© from the UNIX© Environment was employed.

The following target languages were selected:
• "C", because it is currently the most widely used

language for system programming, and
• PEARL, because this language has explicitly been

developed for real-time programming.

The implementation for "C" was based on "Realtime-C
M7©" on a Siemens process control computer with the
operating system "Rmos32©". The implementation for
PEARL used a Windows©-PC with the operating system
"RTOS-UH©" of the University of Hanover.

A programmer who wishes to use the macros would
create his programs with any editor or IDE he chooses,

4. A Test Implementation

4.1. Technical Basis

VOLUME 4, N° 1 2010

Articles 35

Journal of Automation, Mobile Robotics & Intelligent Systems

feed his finished program files (which use the macros) to
"M4"© and, then, feed the "M4"© output to the C or
PEARL compiler. PEARL programs need to include the
RTS.ph file, Realtime-C programs include the RTS.h file.

Two different sets of macros were written, one for
each of the chosen programming languages. Both have,
however, the same syntax and the same functionality.
The challenge was to find a common base of functionality
between C (allows the user to do almost anything) and
PEARL (focusses on readability, but does not allow the
same things as other languages). It could be shown that
most of the required functionality is available (more or
less directly) in both languages.

Implementations for "Java©" und "Ada©" were also
taken into consideration, but could not be realized beca-
use of lack of time. It was also discussed whether a suit-
able object-oriented language could be used as a basis.
However, some doubts concerning the predictability of
the time behaviour of object-oriented programs remai-
ned (cf. Section 2.3).

As examples for necessary modifications two cases
shall shortly be mentioned:
- The proposed notation for exception handling could

not quite be realized. The exception macro cannot
refer to arbitrary preceeding blocks, because e.g. la-
bels and counters for the signal-group-reaction have
to be initialized. Therefore, similar to usual notations
(C++, Java), the macro "Try" was introduced, that
opens a block containing exceptions. Additionally,
the syntax for exceptions had to be modified.

- Another example for an indirect implementation of
a macro is the parallel tasks macro: the version of
Realtime-C that has been used for the test implemen-
tation only supports binary semaphores. However, if
two or more tasks end before ParEnd requests the
semaphore of the first task (cf. Subsection III.1), it
will be released more than once. But, as its value
cannot be increased to more than one, tasks have to
request a second semaphore to be allowed to finish
themselves.

The implementation was tested and demonstrated by
means of two examples:

- a producer-consumer problem (4.2.1) and
- sending and processing of signals (4.2.2).

These are described in the following section.
As far as the syntax of some of the implemented con-

structs is concerned, the reader will note that it differs in
some places from the proposed form, because not all con-
cepts could syntactically be implemented as originally
proposed. The authors, however, chose to leave these
inconsistencies visible instead of "covering them up" by
modifiying the proposed syntax in order to fit this first
experimental implementation. They would rather encour-
age a process of several test implementations in order to
find out the best way of implementing the proposed
concepts and arriving at a really consolidated syntax by
a proper process of discussion among interested people.

In order to encourage interested software designers
to test the implemented macros, they have been made
publicly available on the Internet [21]. They can be used
under the terms and conditions of the GNU General Public
Licence [22].

Basically, this problem consists of two processes:
a producer process that calculates the squares of natural
numbers, and a consumer process that displays the results
on a screen. The results to be displayed are passed from
the first process to the second one using a (non-protec-
ted) buffer in memory. For the synchronization between
the two processes signals are used, because no critical
behaviour of this miniature system is to be expected.

The following parts of the entire program shall now
give an impression as to how programs look alike in the
proposed notation and, how much their lengths increase
after expansion of the macros. In particular, it can be
seen how much more lines of code would have to be writ-
ten in a conventional programming language in order to
achieve a comparable functionality which, of course,
would result in a proportionally higher number of pro-
gramming errors (cf. Section 2.2).

Using the macros developed in the student project,
the code of this program example is the following:

4.2. Demonstration Examples
4.2.1. The Producer-Consumer Problem

VOLUME 4, N° 1 2010

I) Code in PEARL

I. 1) The Producer Process

.

Exclusive (Display, Disp); // exclusive resource

Signal (Sig); // signal

.

Task(Producer) Claim(Sig);

FOR i FROM 0 TO MaxValue REPEAT

Try;

Emit(Sig);

Value = i * i;

EmEnd;

Exceptions(EXCEPTION_SignalInUse);

Wait;

ExEnd;

END;

TaskEnd;

Articles36

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

I.2) The Consumer Process

II) Code in C

II.1) The Producer Process

II.2) The Consumer Process

III) Expanded Code in PEARL

III.1) The Producer Process

Task(Consumer) Claim(Sig, Display); DCL ValueCopy FIXED INIT(0);

WHILE ValueCopy < MaxValue*MaxValue REPEAT

Try;

Demand(Sig, Display);

ValueCopy = Value;

PUT Value, NL TO Disp;

Free;

Exceptions(EXCEPTION_ResourceInUse, EXCEPTION_SignalNotSent);

Wait;

ExEnd;

END;

TaskEnd;

.

Exclusive (Display, stdout); // exclusive resource

Signal (Sig); // signal

.

TASK(Producer) Claim(Sig) {

int i ;

for (i = 0; i <= MaxValue; ++i) {

Try;

Emit(Sig);

Value = i * i;

EmEnd;

Exceptions(EXCEPTION_SignalInUse);

Wait;

ExEnd;

}

} TaskEnd;

Task(Consumer) Claim(Sig, Display) {

int ValueCopy = 0;

while (ValueCopy < MaxValue * MaxValue) {

Try;

Demand(Sig, Display);

ValueCopy = Value;

fprintf(stdout, "%d\n", Value);

Free;

Exceptions(EXCEPTION_ResourceInUse, EXCEPTION_SignalNotSent);

Wait;

ExEnd;

}

} TaskEnd;

As can be seen from these examples, the written code is very short and easy to read, although it contains rather powerful
constructs for process coordination and resource administration.

In order to give an impression of the amount of code programmers would have to write in order to achieve the same
quality of the coordination mechanisms, parts of the code, that has been produced by means of the macrogenerator, are
shown in the next section.

Articles 37

Producer:TASK;

FOR i FROM 0 TO MaxValue REPEAT

BEGIN;

DCL (RTS_ContinueAt1,RTS_ThrownException1,RTS_Wait1) FIXED INIT(0,0,0);

RTS_TryLabel1:

CASE RTS_ThrownException1 ALT(0);

IF RTS_Wait1 == 0 THEN

IF NOT(TRY(EmitSema_Sig)) THEN

RTS_ContinueAt1 = 1;

RTS_ThrownException1 = 1;

GOTO RTS_TryLabel1;

RTS_ThrowLabel1_1:;

FIN;

ELSE

REQUEST EmitSema_Sig;

FIN;

Value = i * i;

RELEASE ResourceSema_Sig;

ALT(1);

RTS_Wait1 = 1;

RTS_ContinueAt1 = 0;

RTS_ThrownException1 = 0;

GOTO RTS_trylabel1;

FIN;

RTS_ExEndLabel_1:

END;

END;

RELEASE RTS_TaskSema(1);

END;

Consumer:TASK;

DCL ValueCopy FIXED INIT(0);

WHILE ValueCopy < MaxValue * MaxValue REPEAT

BEGIN;

DCL (RTS_ContinueAt2,RTS_ThrownException2,RTS_Wait2) FIXED INIT(0,0,0);

RTS_TryLabel2:

CASE RTS_ThrownException2 ALT(0);

IF RTS_Wait2 == 0 THEN

IF NOT(TRY(ResourceSema_Sig)) THEN

RTS_ContinueAt2 = 1;

RTS_ThrownException2 = 3;

GOTO RTS_TryLabel2;

RTS_ThrowLabel2_1:;

FIN;

ELSE

REQUEST ResourceSema_Sig;

FIN;

IF RTS_Wait2 == 0 THEN

IF NOT(TRY(ResourceSema_Display)) THEN

RELEASE ResourceSema_Sig;

RTS_ContinueAt2 = 2;

RTS_ThrownException2 = 2;

GOTO RTS_TryLabel2;

RTS_ThrowLabel2_2:;

FIN;

ELSE

REQUEST ResourceSema_Display;

Remark: the Semaphore "RTS_TaskSema" is necessary in the parend-clause of the main function. Its purpose is to detect
that all parallel tasks have been completed. It is, therefore, automatically generated and inserted by the macro generator.

III.2) The Consumer Process

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

Articles38

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4, N° 1 2010

FIN;

ValueCopy = Value;

PUT Value, NL TO Disp;

RELEASE ResourceSema_Display;

RELEASE EmitSema_Sig;

ALT(2,3);

RTS_Wait2 = 1;

RTS_ContinueAt2 = 0;

RTS_ThrownException2 = 0;

GOTO RTS_TryLabel2;

FIN;

RTS_ExEndLabel_2:

END;

END;

RELEASE RTS_TaskSema(1);

END;

void _FAR _FIXED Producer(void) {

do {

int i;

for (i = 0; i < maxvalue; ++i) {

do {

int RTS_ContinueAt = 0, RTS_ThrownException = 0, RTS_Wait =0;

RTS_TryLabel1:

switch (RTS_ThrownException) {

case(0):

do {

if (RTS_Wait1 == 0) {

if (RmGetbinSemaphore (RM_CONTINUE, EmitSema_Sig)!=RM_OK) {

RTS_Continueat = 1;

RTS_ThrownException = 1;

goto RTS_TryLabel1;

RTS_ThrowLabel1_1:;

}

} else {

RmGetBinSemaphore(RM_WAIT, EmitSema_Sig);

}

} while (0);

Value = i * i;

RmReleaseBinSemaphore(ResourceSema_Sig);

break;

case 1:;

/* In case the signal is used,*/

/* wait until it is free again*/

RTS_Wait = 1;

RTS_ContinueAt = 0;

RTS_ThrownException = 0;

goto RTS_TryLabel1;

break;

}

}while(0);

}

} while(0);

RmGetBinSemaphore(RM_WAIT, RTS_TaskReleaseSema[0]);

RmReleaseBinSemaphore(RTS_TaskSema[0]);

RmDeleteTask(RM_OWN_TASK);

};

IV) Expansion of the Producer Process in C

Articles 39

Journal of Automation, Mobile Robotics & Intelligent Systems

The consumer process in C has been left out in order to
save space. It consists of still more lines of code than the
expanded example in PEARL, and the authors believe that
the character of the proposed method is sufficiently illus-
trated by the examples given.

This example demonstrates the transmission of sig-
nals from one computer to another one. On the first com-
puter coordinates are input by means of a mouse, on the
second one they are displayed graphically. It was chosen,
because the user interaction and visualisation of the in-
put reflect some real-time requirements. In this case,
they are the result of the necessary interaction with a hu-
man user. Therefore, unbounded wait statements are
adequate. However, these should not be applied in hard
real-time applications, where continue, repeat and can-
cel offer better predictability of the program execution
behaviour.

Fig. 11 shows the structograms used for the specifica-
tion of the program code in order to give an impression of
the applicability of the proposed graphical notation.
Unfortunately, the example could only be programmed
in PEARL, because the process control computer (which
could run "C") did not have the necessary equipment.

As already mentioned in Section 4.1, the effort for the
test implementation of the preprocessor only amounted
to approximately three person months. In this short time
more of the proposed concepts were implemented than
had been expected. To the opinion of the authors this
compares rather favourably with the usual implementa-
tion costs of software tools.

As could be expected, some problems arose with res-
pect to a complete implementation of the proposed con-
structs in a one-to-one fashion. But they were also smal-
ler than expected. Most of the necessary modifications
were related to the syntax, because a macropreprocessor
is less powerful in that respect than an interactive gra-
phical programming tool.

However, the expected reduction of the complexity of
the programming process has been achieved. First of all,
the length of the programs to be written is typically more
than 50% shorter than until now, when the described
programming mechanisms would have to be programmed
manually - and provided the same reliability-oriented
mechanisms. Of course, one might argue that part of this
reduction could have been achieved without the propo-
sed constructs by means of the use of macros alone. How-
ever, the authors hold that the much more flexible cha-
racter of "classic" programming elements for real-time
applications (according to experience) usually leads to
many different ("individualistic") implementations of
the same functionality and therefore would not really al-
low a comparable implementation in the form of macros.
Therefore, according to the well-known direct relation-
ship between the number of written "lines of source co-
de" and the number of errors in a program this already
means a considerable increase in the reliability of the
resulting programs. In addition, the proposed constructs
are much easier to comprehend than conventional real-

4.2.2. The Signal Transmission Problem

4.3. Discussion of Results

time programs. This leads to a further reduction of design
errors.

In addition to the benefits that have been mentioned
in Section 2.2, discussion turned out that some further
means (cf. Section 2.1) for the support of reliability are
provided by the proposed method:

It is possible to model the behaviour of a software
system in order to discover conceptual errors. For this
purpose one could, e.g., imagine a preprocessor that
separates the real-time constructs from the algorithmic
parts and replaces these by dummies, containing runtime
estimates. The result could then be used as input for
a simulator. This possibility of modelling the real-time
behaviour of a system also allows - to a certain degree -
fault forecasting, at least as far as timing and synchroni-
zation problems are concerned.

Last but not least, the method supports (as far as can
reasonably be expected) software re-use which, in turn,
helps in fault prevention. The basis for this is the sepa-
ration of the computational parts of a program from the
ones determining its real-time behaviour. On this basis,
it is either possible to re-use tested and proven algo-
rithms in a new real-time framework, or to replace out-
dated algorithms in a stable real-time structure without
running the risk of disturbing or destroying critical ti-
ming relations.

By means of the test implementation presented in
this paper, it could be demonstrated that the proposed
constructs indeed work, and can be applied to the cons-
truction of reliable real-time programs.

It could be shown that the proposed "real-time struc-
tograms" can be applied to a variety of programming lan-
guages, and that they allow the specification of real-time
systems independent of the underlying operating sys-
tem. Therefore, the authors hold that this method is an
excellent means for the design of safe and reliable real-
time systems in the future, because it does not affect the
customary use of common programming languages, ope-
rating systems, or hardware product lines.

A very interesting feature appears to be the possibi-
lity to extract information from the design of a real-time
system that can be used as input for simulators or que-
uing models in order to test the behaviour of a real-time
system under design already in very early phases.

A closer look even reveals that it can also be used for
the design of entire systems - including hard-ware com-
ponents. The reason for this is that the abstraction level
of the structural elements is so high that they can also
represent the functions of hardware components. Basi-
cally, this is already a property of structograms in gene-
ral. These do not describe a flow of control as a sequence
of detailed single statements, but more or less in the
form of "action groups". Such an action group could,
therefore, be implemented as a completely independent
program, running on some remote processing unit.
This, in turn, may well be implemented in the form of
a custom-made chip.

The process cluster is a still more instructive example:
the individual processes of a cluster might be running on
completely separate processing units. It is only necessary

5. Conclusions

VOLUME 4, N° 1 2010

Articles40

Journal of Automation, Mobile Robotics & Intelligent Systems

that a mechanism exists for starting them at the same
time, and for making sure that their termination is coor-
dinated according to the rules of the flow of control "of
higher order", of which they are part according to the
specification given by the overall structogram. However,
a complete description of this approach would require
a separate paper.

The authors hope that the presented method turns
out to be a useful contribution to the solution of some

problems connected with the design of real-time systems
and look forward to comments and discussions. Finally,
they want to thank the reviewers for their numerous de-
tailed and useful comments. These certainly helped to
identify a number of points that had not been made com-
pletely clear in the first place. The authors hope that this
revised version now gives the reader a sufficiently com-
plete impression.

VOLUME 4, N° 1 2010

Fig. 11. Structograms of the Signal Transmission Problem.

Articles 41

Journal of Automation, Mobile Robotics & Intelligent Systems

AUTHORS
Peter F. Elzer*

Martin Gollub

Sven Trenkel

References

- retired director of the Institute for
Process and Production Control Technology, Technical
University of Clausthal, now living at: Paradiesstr. 4,
D-80538 München, Germany. E-mail: elzer.home@t-
online.de.

- Werum Software & Systems AG, Wulf-
Werum-Straße 3, D-21337 Lüneburg, Germany. E-mail:
martin.gollub@werum.de.

- Schlesienstr. 7, D-21391 Reppenstedt,
Germany.
* Corresponding author

[1] Trenkel S., Gollub M.,

; Student Project in the Department
of Mathematics and Computer Science of the Technical
University of Clausthal Prof. K. Ecker, 2004.

[2] Elzer P., “A Mechanism for the Design of Structured
Real-time Programs for Process Automation”; Confe-
rence Proceedings "Prozessrechner 77",

, vol. 7, Springer-Verlag: Berlin-Heidel-
berg-New York, 1977, pp. 137-148.

[3] Elzer P., ; Dis-
sertation, Report of the Institute for Mathematical Ma-
chines and Data Processing of the University of Erlan-
gen-Nuernberg, vol. 12, no. 1, 1979.

[4] Elzer P., “Missed Opportunities in Real-time Program-
ming?”. In: Wolfinger B. (ed.),

, Sprin-
ger-Verlag: Berlin-Heidelberg-New York, 1994, pp. 328-
339.

[5] Elzer P., “A Method for the Construction of Reliable
Real-Time Programs”. In:

, Munich, 2004.
[6] DIN 66253-2 PEARL 90; Beuth Verlag, Berlin, Köln,

1998.
[7] Frevert L., Beschreibung der PEARL90-Syntax (Descrip-

tion of the Syntax of PEARL);

[8] Siemens SIMATIC Software, System Software for M7-
300/400, System and Standard Functions; Reference
Manual, 1997.

[9] Laprie J.-C., Dependability of Computer Systems: from
Concepts to Limits; 1998 IFIP International Workshop
on Dependable Computing, Johannesburg.

[10] Industrial-process measurement and control - Evalua-
tion of system properties for the purpose of system as-
sessment. Part 5: Assessment of system dependability,
Draft, Publication 1069-5, CEI Secretariat, 1992.

[11] Parnas D.L., A Technique for Software Module Specifica-
tion with Examples; , vol. 15, no. 5, 1972,
pp. 330-336.

[12] Nassi B., Shneiderman A., “Flowchart Techniques for
Structured Programming”, , vol. 8, no.

Implementation von Methoden
zur zuverlässigen Programmierung von Echtzeitsystemen
(Implementation of Methods for Reliable Programming of
Real-Time Systems)

Informatik-
Fachberichte

Structured Description of Process Systems

Innovationen bei Re-
chen- und Kommunikationssystemen, Proceedings of the
24 Annual Conference of the German Computer Society
in the framework of the 13 IFIP World Congress

Proceedings of the Conference
on Embedded Systems

http://www.irt.uni-hannover.de/pub/pearl/Frevert/
PEARL90Syntax.pdf

Comm. ACM

SIGPLAN Notices

th

th

8, 1973, pp. 12-26.
[13] Zalewski J., “Object-Orientation vs. Real-Time Sys-

tems”, , vol. 18, 2000, pp. 75-
77.

[14] Elzer P., “Resource Allocation by Means of Access
Rights, an Alternative View on Real-time Program-
ming“. In:

, Pergamon Press: Oxford-New
York, 1980, pp. 73-77.

[15] Goodenough J.B., “Exception Handling - Issues and
a Proposed Notation”, , vol. 18, no. 12,
1975, pp. 683-696.

[16] Dijkstra E.W., “Cooperating Sequential Processes”. In:
Genuys (ed.) , London, 1969.

[17] Van Horn D., “Programming Semantics for Multipro-
grammed Computations”, , vol. 9, no. 3,
1966, pp. 143-155.

[18] Van Wijngarden A., Mailloux B.J., Peck J.E.L., Koster
C.H.A. “Report on the Algorithmic Language AL-GOL
68“, , vol. 14, 1969, pp. 79-218.

[19] Jones G., , Prentice Hall Interna-
tional: Englewood Cliffs, London, 1987.

[20] Habermann N., Prevention of System Deadlocks;
, vol. 12, no. 7, 1969, pp. 373-385.

[21]
[22]

Real-time Systems Journal

Proceedings of the IFAC/IFIP Workshop on
Real-time Programming

Comm. ACM

Programming Languages

Comm. ACM

Num. Math.
Programming in OCCAM

Comm.
ACM
http://home.tu-clausthal.de/student/software/
http://www.gnu.org/licenses/gpl.txt

VOLUME 4, N° 1 2010

Articles42

