PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of antagonistic wire-driven joint employing kinematic transmission mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Antagonistic mechanisms attract attentions as joint actuators of linkage mechanisms, which control output torque, joint stiffness and position simultaneously. As the actuators or components of antagonistic driven joints, special devices with nonlinear elasticity property such as pneumatic actuators, nonlinear springs are often utilized to satisfy the requirements of antagonistic mechanisms. However, these devices have difficulties in control caused by complex and nonlinear properties, downsizing of actuator, and response time of articular compliance. In order to solve these problems, we propose a new antagonistic joint mechanism using kinematic transmission mechanism (KTM), which is composed of links and cams with dedicated design. The performance of KTM is evaluated through stiffness and position control simulations and experiments.
Twórcy
autor
autor
autor
  • Fukuoka Industry, Science & Technology Foundation, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0135, Japan, +81- 93-695-6102 (ext. 2838), sonoda@lab-ist.jp
Bibliografia
  • [1] Crisman J. D., Bekey G., “The Grand challenge for robotics and automation”, IEEE Robotics & Automation Magazine, vol. 3, 1996, pp. 10-16.
  • [2] Engelberger J. F., Robotics in Service , The MIT Press, Cambridge, MA, 1989.
  • [3] Friedman B., et al. , “Hardware companions?: What online AIBO discussion forums reveal about the humanrobotic relationship” . In: Proc. of CHI 2003 , ACM Press, 2003, pp. 273-280.
  • [4] MelsonG. F., et al. , “Robots as Dogs?: Children's Interactions with the Robotic Dog AIBO and a Live Australian Shepherd”. In: Proc. in conference on Human Factors in Computing Systems, 2005, pp. 1642-1659.
  • [5] Bartneck C., Forlizzi J., “Shaping human-robot interaction: Understanding the social aspects of intelligent robot products”, Ext. Abstracts CHI 2004 , ACM Press, 2004, pp. 1731-1732.
  • [6] Hirai K., Hirise M., Haikawa Y., Takenaka T., “The development of Honda Humanoid Robot”. In: Proc. of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Beligium, 1998 , pp. 1321-1326.
  • [7] Honda Motor Co., Ltd., Asimo year 2000 model, http://world.honda.com/ASIMO/technology/spec.html.
  • [8] Akazawa K., Aldridge J.W., Steeves J.D., Stein R.B., “Modulation of Stretch Reflexes During Locomotion in the Mesencephalic Cat”, Journal of Physiology , vol. 329, 1982, pp. 553-567.
  • [9] Siciliano B., Khatib O. (Eds.), Springer Handbook of Robotics, Springer Berlin Heidelberg, 2008, pp. 161185.
  • [10] Laurin-Kovitz K.F., Colkgate J.E., Carnes S.D.R, “Design of Components for Programmable Passive Impedance”. In: Proc. of the 1991 International Conference on Robotics & Automation , 1991, pp. 1476-1481.
  • [11] Noborisaka H., Kobayashi H., “Design of a Tendon-Driven Articulated Finger-Hand Mechanism and Its Stiffness Adjustability”, JSME International Journal. Series C: Mechanical Systems, Machine Elements and Manufacturing, vol. 43, 2000, no. 3, pp. 638-644.
  • [12] Yamaguchi J., Takanishi A., “Development of a Leg Part of a Humanoid Robot-Design of a Biped Walking Robot Having Antagonistic Driven Joints Using a Nonlinear Spring Mechanism”, Advanced robotics: the International Journal of the Robotics Society of Japan , vol. 11, 1997, no. 6, pp. 633-652.
  • [13] Morita T., Sugano S., “Development and Evaluation of Seven-D.O.F. MIA ARM”. In: Proc. of the 1997 IEEE International Conference on Robotics & Automation , USA, 1997, pp. 462-467.
  • [14] Koganezawa K., Nakazawa T., Inaba T., “Antagonistic Control of Multi-DOF Joint by Using the Actuator with Non-Linear Elasticity”. In: Proc. of the 2006 IEEE International Conference on Robotics & Automation , USA, 2006, pp. 2201-2207.
  • [15] Schulte H.F., “The Characteristics of the McKibben Artificial Muscle”. In: Application of External Power in Prosthetics and Orthotics , National Academy of Science, 1961, pp. 94-115.
  • [16] Akazawa, Biomechanism Library Biological Information Engineering, Tokyo Denki University Press (in Japanese), 2001, pp. 81-103.
  • [17] Feldman A.G., “Once more on the Equilibrium-Point hypothesis (lambda model) for motor control” , Journal of Motor Behavior, vol. 18, 1986, no. 1, pp. 17-54.
  • [18] Hanafusa H., Adli M.A.. “Effect of Internal Forces on Stiffness of Closed Mechanisms”. In: Proc. 5 th International Conference on Advanced Robotics , Italy, 1991, pp. 845-850.
  • [19] Li Z., Kubo K., Kawamura S., “Effect of internal force on rotational stiffness of a bicycle handle”. In: Proc. of the 1996 IEEE International Conference on Systems Man, and Cybernetics , 1996, pp. 2839-2844.
  • [20] Marr D., “A theory of cerebellar cortex”, Journal of Physiology, vol. 202, 1969, pp. 437-470.
  • [21] Albus J.S., “A theory of cerebellar function”, Mathematical Bioscience , vol. 10, 1971, pp. 25-61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0011-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.