PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The study of bio-inspired robot motion control system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Robots and robotics technologies are expected as new tools for inspection and manipulation. The dynamics of robot always are changed by environment and robot of state in mission. Therefore, an adaptation system, which is able to switch controller due to environment and robot of state, is needed. Meanwhile, animals are able to go through several environments and adapt several own states. The adaptation system is realized Central Pattern Generator (CPG). CPG exists in nervous system of animals and generates rhythmical motion pattern. In this paper, a robot motion control system using CPG is proposed and applied to an amphibious multi-link mobile robot.
Słowa kluczowe
Twórcy
autor
autor
autor
autor
  • Department of Brain Science and Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196, Japan. Tel&Fax: +81-93-695-6102, t-matsuo@brain.kyutech.ac.jp
Bibliografia
  • [1] Taga G., “Emergence of Locomotion”, J. of R.S.J. , vol. 15, no. 5, 1997, pp. 680-683 (in Japanese).
  • [2] Williamson M.M., Robot Arm Control Exploiting Natural Dynamics, PhD thesis, Massachusetts Institute of Technology, 1999.
  • [3] Matsuoka K., Ohyama N., Watanabe A., Ooshima M., “Control of a giant swing robot using a neural oscillator”, Advances in Natural Computation (Proc. ICNC 2005, Part II), 2005, pp.274-282.
  • [4] Mori M., Yamada H., Hirose S., “Design and Development of Active Cord Mechanism ”ACM-R3” and its 3dimentional Locomotion Control”, J. of R.S.J. , vol. 23, no. 7, 2005 , pp. 886-897 (in Japanese).
  • [5] Takayama T., Hirose S., ”Study on 3D Active Cord Mechanism with Helical Rotational Motion”, J. of R.S.J., vol. 22, no.5, 2004, pp.625-635 (in Japanese).
  • [6] Chigasaki S., Mori M., Yamada H., Hirose S., “Design and Control of Amphibious Snake-Like Robot “ACM-R5””. In: Proceedings of the 2005 JSME Conference on Robotics and Mechatronics , ALL-N-020(1)-(3).
  • [7] Hirose S., “Bionic machine engineering”, Kougyo Chosakai, 1987 (in Japanese).
  • [8] Azuma A., The subject-book of Animal’s Motion , Asakura, 1997.
  • [9] Matsuo T., Yokoyama T., Ishii K., “Development of Neural Oscillator Based Motion Control System and Applied to Snake-like Robot”. In: IROS’07, 2007, pp. 3697-3702.
  • [10] Val der Pol B., “On relaxation oscillations”, Phil. Mag., vol. 2, no.11, 1926, pp. 978-992.
  • [11] Matsuoka K., “Sustained oscillations generated by mutually inhibiting neurons with adaptation”, Biological Cybernetics, vol. 52, 1985, pp. 367-376.
  • [12] Matsuoka K., “Mechanisms of frequency and pattern control in the neural rhythm generators”, BiologicalCybernetics, vol. 56, 1987, pp. 345-353.
  • [13] Terman D., Wang D.L. ,”Global competition and local cooperation in a network of neural oscillators”, Physica D81, 1995, pp. 148-176.
  • [14] Wilson H.R., Cowan J.D., “Excitatory and inhibitory interactions in localized populations of model neurons”, Biological Journal , vol. 12, 1972, pp. 1-24.
  • [15] Taga G., Yamaguchi Y., Shimizu H., “Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment”, Biological Cybernetics , vol. 65, 1991, pp. 147-159.
  • [16] Taga G., “A model of the neuro-musculo-skeletal system for human locomotion II. Real-time adaptability under various constraints”, Biological Cybernetics , vol. 73, 1995, pp. 113-121.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0011-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.