PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The spike-timing-dependent plasticity function based on a brain sequential learning system using a recurrent neuronal network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the spike-timing-dependent plasticity (STDP) at the synapses of the medial entorhinal cortex (EC) and the dentate gyrus (DG) in the hippocampus. The medial and lateral ECs respectively convey spatial and non-spatial information to the hippocampus, and the DG of the hippocampus integrates or binds them. There is a recurrent neuronal network between the EC and the hippocampus called the EC-hippocampus loop. A computational study has shown that using this loop and STDP phenomena at the recurrent EC synapse, sequential learning can be accomplished. But the STDP functions at the synapses of the EC and DG have not yet been studied by neurophysiological experiments. Experiments on STDP phenomena were performed in rats. The STDP function was asymmetrical in the EC synapse and symmetrical in the DG. The medial EC mainly processes the time-series signals for spatial information about visual landmarks when a rat is running in an environment, the lateral EC processes their features, and the DG binds or integrates the information on the positions and features of the landmarks. Thus, the EC-hippocampus loop processes sequential learning of spatial and non-spatial information in parallel, and the DG binds or integrates the two kinds of signals. A system based on this biological phenomenon could have similar characteristics of parallel processing of object features and positions, and their binding.
Słowa kluczowe
Twórcy
autor
autor
autor
autor
  • Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kita-kyushu, Fukuoka, Japan 808-0196. Kiyohisa Natsume, tel and fax: +81-93-695-6094, natume@brain.kyutech.ac.jp
Bibliografia
  • [1] Elman J.L., "Finding structure in time", Cognitive Science, vol. 14, 1990, pp. 179–211.
  • [2] Jordan M.I., "Serial Order: A parallel distributed processing approach", ICS report, vol. 8604, 1986, pp. 1-40.
  • [3] Kloosterman F., Van Haeften T., Witter M.P., Lopes Da Silva F.H., "Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re-entrance in the hippocampal-entorhinal system",, Eur. J . Neurosci., vol. 18, 2003, pp. 3037-52.
  • [4] Witter M.P., Moser E.I., "Spatial representation and the architecture of the entorhinal cortex",Trends Neurosci, vol. 29, 2006, pp. 671-8.
  • [5] Bliss T.V., Collingridge G.L., "A synaptic model of memory: long-term potentiation in the hippocampus", Nature, vol. 361, 1993, pp. 31-9.
  • [6] Bi G.Q., Poo M.M., "Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type", J. Neurosci., vol. 18, 1998, pp. 10464-72.
  • [7] Markram H., Lubke J., Frotscher M., Sakmann B., "Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs", Science, vol. 275, 1997, pp. 213-5.
  • [8] Abbott L.F., Blum K.I., "Functional significance of longterm potentiation for sequence learning and prediction", Cereb Cortex, vol. 6, 1996, pp. 406-16.
  • [9] Lubenov E.V., Siapas A.G., "Decoupling through synchrony in neuronal circuits with propagation delays", Neuron, vol. 58, 2008, pp. 118-31.
  • [10] Igarashi J., Hayashi H., Tateno K., "Theta phase coding in a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections", Cogn. Neuro-dyn., vol. 1, 2007, pp. 169-84.
  • [11] Lin Y. W., Yang H.W., Wang H.J., Gong C.L., Chiu T.H., Min M.Y., "Spike-timing-dependent plasticity at resting and conditioned lateral perforant path synapses on granule cells in the dentate gyrus: different roles of N-methyl-D-aspartate and group I metabotropic glutamate receptors", Eur. J. Neurosci., vol. 23, 2006, pp. 2362-2374.
  • [12] Kampa B.M., Letzkus J.J., Stuart G.J., "Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity", Trends Neurosci., vol. 30, 2007, pp. 456-63.
  • [13] Sjostrom P.J., Rancz E.A., Roth A., Hausser M., "Dendritic excitability and synaptic plasticity", vol. 88, 2008, pp. 769-840.
  • [14] Bienenstock E.L., Cooper L.N., Munro P.W., "Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex", J. Neurosci., vol. 2, 1982, pp. 32-48.
  • [15] O'Keefe J., "Place units in the hippocampus of the freely moving rat", Exp. Neurol, vol. 51, 1976, pp. 78-109.
  • [16] Hayashi H., Igarashi J., "LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise", Cogn. Neurodyn., no. 2(3), June 2009, pp. 119-130.
  • [17] Natsume K., Furukawa T., "Introduction of Brain-inspired systems". In: 2009 International Symposium on Nonlinear Theory and its Applications, Sapporo, Japan, 2009, pp. 195-197.
  • [18] Rumelhart D.E., Hinton G.E., Williams R.J., Learning internal representations by error propagation, vol. 1, MIT Press, 1986.
  • [19] Foster D.J., Wilson M.A., "Reverse replay of behavioural sequences in hippocampal place cells during the awake state", Nature, vol. 440, 2006, pp. 680-683.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0011-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.