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Introduction 

Modern managements of WDS need water quality 
models that are able to accurately predict the dynamics 
of water quality variations within the distribution system 
environment. Such models would have possible applica-
tions in predicting water quality degradation problems, 
calibrating system hydraulics, designing water quality 
sampling programs, optimizing the disinfection process, 
evaluating the water quality aspects of distribution net-
work and storage-reservoir improvement projects, and 
assessing alternative operational and control strategies 
for maintaining and improving water quality in distribu-
tion systems [12]. 

Water quality models need to be calibrated before 
they can be applied to solve system problems. Effective 
water quality model demands accuracy of hydraulic 
models and its accurate parameters. So, the calibration 
of hydraulic model is the basis of calibration of water 
quality model. Water distribution model calibration is 
typically accomplished by adjusting network parameters 
so that model results match field measurements. Refer-
ence [16] used artificial neural networks (ANN) to per-
form the hydraulic model calibration, which obtained 
pipe’s roughness from pressures and flow rates. 

In the past, Refs. [4, 11] used genetic algorithm 
(GA) to calibrate the parameters of hydraulic models. 
In Ref. [9], calibration of water network model can be 
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integrated with leakage distribution in the process of 
hydraulic calibration. Reference [6] considered the un-
certainties in measurement and estimation and provides 
a measure of the quality of the calibration. Reference 
[14] made full use of information from tracer studies 
as well as information from pressure surveys, which 
would be helpful to calibration of both hydraulic and 
water quality model. 

The literature presented above is only a part of 
calibration of hydraulic model. Though the underlying 
philosophy of water quality calibration is the same as 
that of hydraulic calibration, the water quality calibra-
tion will cost more computing time than calibration of 
hydraulic model, even reaching more than a hundred 
times. Recently, some programs to calibrate water 
distribution models have been available and have oc-
casionally been used on real water systems, such as the 
Darwin Calibrator of Haestad Methods [11, 17] using 
a GA solver to optimize relative parameters, it is dif-
ficult, however, to apply on a large-scale or a medium-
-scale real system for long computation time. Therefore, 
we have to seek a new method to calibrate the param-
eters of water quality model. 

This paper is organized as follows. Section ‘Back-
ground’ provides a brief background discussion of this 
topic preparing for subsequent sections. It is followed 
by a specified description of the new method in section 
‘Methodology’. In section ‘Case study’ a large-scale wa-
ter distribution network applies this method to optimize 
the parameter of water quality model. The final section 
concludes this method and restates the key traps in the 
optimal process. 

Background 

Water quality model 

Most water quality models make use of one-dimensional 
advective-reactive transport to predict the changes in 
constituent concentrations due to transport through a 
pipe. It can be written as follows [17]: 

(1)  

where: c is the concentration of a constituent; t is the 
time; ν is the flow velocity; x is the distance and R rep-
resents the constituent reaction relationship. Water 
quality model used in this paper is based upon a parcel 
tracking algorithm. It tracks the change in water quality 
of discrete parcels of water as they move along pipes 
and mixe together at junctions between the fixed-length 
time steps. In order to do this, there is a need to know 
the rate at which the substance reacts and how this rate 
might depend on substance concentration. Reactions 
can occur within both the bulk flow and with the mate-
rial along the pipe wall. 

Bulk flow reactions occur in the main flow stream of 
a pipe or in a storage tank, unaffected by any processes 
that might involve the pipe wall. A water quality model 
simulates these reactions using the n-th order kinetics, 
where the instantaneous rate of reaction (R in unit of 
mass/volume/time) is assumed to be concentration-
-dependent, given as [17]: 

(2) R(c) = Kb cn 

where Kb is a bulk rate coefficient; c is the reactant con-
centration (mass/volume) and n is the reaction order. 
Kb has units of concentration raised to the (1 – n) power 
divided by time. It is positive for growth reactions and 
negative for decay reactions. It also considers reactions 
where a limiting concentration exists on the ultimate 
growth or loss of the substance. In this case the rate 
expression for a growth reaction becomes [17]: 

(3)  R(c) = Kb(cL – c)c(n –1) 

where cL is the limiting concentration. Thus, there are 
three parameters (Kb, cL and n) that are used to char-
acterize bulk reaction rates. Different values of these 
parameters lead to different kinetic models. Bottle 
test is recommended for determining the bulk reaction 
coefficient such as a chlorine decay factor. It provides 
a good baseline value and reference for constructing a 
water quality model [17]. 

In addition to bulk flow reactions, constituent reac-
tions occur with material on or near the pipe wall. The 
rate of this reaction is dependent on the concentration 
in the bulk flow and pipe wall conditions, given as: 

(4)  

where Kw is a wall reaction rate coefficient; A/V is the 
surface area per unit volume within a pipe. It converts 
the mass reacting per unit of wall area to a per unit vol-
ume basis. n is the wall reaction order taking a value of 
either 0 or 1, so that the unit of Kw is either mass/area/
time or length/time. Both Kw and n are site specific and 
need to be calibrated for water distribution pipes. 

Water quality model with combined bulk and wall 
decay gives better results than a single decay coefficient. 
Reliability of wall demand Kw estimation results in a very 
low model error [17]. Combined bulk and wall decay 
are adopted in this paper. 

Metamodeling 

Metamodeling research has been published since 1970, 
it has been a major research field during the last decade 
[3, 4]. The basic idea of metamodeling is to construct 
an approximate model using function values at some 
sampling points, which are typically determined using 
experimental design methods [10]. The main purpose of 
metamodeling is to reduce the cost, time, and amount 
of effort required during a simulation analysis. It is 
usually a supplementary model that can be alternatively 
used to interpret a more detailed model. The goals of 
metamodeling cover understanding, prediction, optimi-
zation, and verification and validation [15]. Metamodels 
are constructed in three stages, i.e. estimation, analysis 
and validation. Its process can involve both qualitative 
and quantitative factors [7]. 

The most popular metamodeling approach in simu-
lation involves the use of parametric polynomial regres-
sion models in response surface methods [4], which is 
formulated as follows: 
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(5)  

where Y is the output vector; X is the input vector; m 
is the dimension of input vector; p is the polynomial 
order. Metamodel can be classified into parametric 
and nonparametric techniques [6]. The most popular 
types of metamodels are polynomial regression models, 
splines, kriging and neural networks [15]. The meta-
model might model only a local portion of the simulated 
system or may encompass the complete simulated sys-
tem, a global metamodel. Trade between accuracy and 
computational expense and between local and global 
information must be considered when developing a 
simulation metamodel. 

The use of metamodels as surrogates for WDS simu-
lation models has been very rare to date. Roughness 
coefficients [16] were optimized using a GA linked to 
the ANN. This metamodeling example in WDS opti-
mization ran approximately at twice the speed of the 
hydraulic simulation model, suggesting that the ANN 
metamodeling technique has potential for increasing 
the computational efficiency of WDS optimization. 
ANNs are used as a surrogate model to optimize the 
drinking water distribution [6]. The neural networks 
may be used to obtain precalibrations or guides for a 
manual calibration, but they are insufficient when used 
as unique calibration tools [16]. 

Radial basis functions 

Neural networks have seen an explosion of interest over 
the last few years, and are being successfully applied 
across an extraordinary range of problem domains, in 
areas as diverse as finance, medicine, engineering, geol-
ogy and physics. In particular, neural networks are non-
-linear. It also keeps in check the curse of dimensionality 
problem which bedevils attempts to model non-linear 
functions with large numbers of variables. Neural net-
works can accommodate a combination of continuous 
variables and discrete numeric variables. Additionally, 
most neural network paradigms are global models, so 
a single neural network could be developed to model 
the entire simulation response surface. 

Radial basis functions (RBF) were originally devel-
oped by Hardy to fit irregular topographic contours of 
geographical data [7, 14]. Radial basis function networks 
have an input layer, a hidden layer of radial units and 
an output layer of linear units. The mathematically 
represented of the RBF metamodel as follows: 

(6)  

where n is the number of sampling points; x is the vec-
tor of input variables; xi is the center of basis function 
ϕ,||•|| is any lp norm (typically is Euclidean norm, this 
kind of norm is used in this study) and wi is the unknown 
weighting coefficient. Therefore, an RBF is actually a 
linear combination of n basis functions with weighted 
coefficients. 

RBF can be expressed as matrix format: 

(7)        f = Aλ 

where: f = [f(x1), …, f(xm)]T, Aij = ϕ(||xi – xj||), 
       i = 1,2,…,m; j = 1,2,…,n 

The coefficient vector λ is obtained by solving 
Eq. (7). An RBF using the aforementioned highly non-
-linear functions does not work well for linear responses. 
To solve this problem, we can augment an RBF by in-
cluding a polynomial function such that. 

(8)  

where m is a total number of terms in the polynomial, 
and cj (j = 1,2,…,m) is the corresponding coefficient. 

The advantage of RBF is found to be the best for 
overall performance on accuracy, robustness, problem 
types, sample size, efficiency, and simplicity compared 
to response surface method (RSM), kriging method 
(KM) and multivariate adaptive regression splines 
(MARS), based on evaluations of the coefficient of 
multiple determination (R2), relative average absolute 
error (RAAE) and relative maximum absolute error 
(RMAE) [8]. 

One of the disadvantages of RBF is that it is more 
expensive than RSM, because it uses a series of com-
putationally expensive functions for a single model; 
therefore, it is less efficient in performing function 
evaluations. This drawback becomes apparent when 
solving multi-objective design optimization problems 
in which millions sometimes even billions of solutions 
need to be found in order to develop the Pareto Fron-
tier. Another disadvantage of using RBF is that model 
fitness cannot be checked using ANOVA, because by 
definition an RBF passes exactly through all the design 
points [10]. 

Methodology 

Water quality modeling of WDS is a time-consuming 
task, which has to solve the hydraulic equation firstly, 
i.e. the equations of continuity and energy, for transient 
analysis, the equations of momentum are necessary. 
The water quality computing step is shorter than the 
hydraulic one and the number of computing times will 
be greater than the hydraulic one. Additionally, water 
quality analysis must take an extended-period simula-
tion, or it will be no-good for long-distance pipelines as 
the constituent cannot reach the relative node. From 
our previous experiences, a medium-scale network with 
6000 nodes and 6000 pipes will cost near one minute 
time to make a 24 h simulation (15 min/step, 96 steps 
in all; normal computer configuration: 512M/1.7G). 
Optimization algorithms may require a few hundred to 
several thousands of model simulations to converge at 
a unique set of parameters. For example, an optimiza-
tion using GA with 30 populations and 100 generations 
needs 3000 min (50 h). Thus, water quality simulation 
in each iterative program of specified optimization 
belongs to costly functions that is computationally 
challenging. 

Because of the enormous computational cost in-
volved, the analyst is typically willing to perform only 
a small number of function evaluations when optimiz-
ing such costly functions. Our goal, then, is to develop 
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global optimization algorithms of the number of func-
tion evaluations. A more practical type of optimization 
method for a computationally expensive function is 
one that is based on a metamodel presented as before 
(also known as response surface model or surrogate 
model). The purpose of the metamodel is to serve as 
an inexpensive approximation to the costly evaluation 
function that can help identify promising points for 
costly function evaluation. 

Reference [5] presented a new framework, CORS 
(Constrained Optimization using Response Surface), 
for solving costly evaluation function optimization. The 
CORS method is a flexible framework and can be used 
to different fields. But it should be adjusted and rein-
forced according to the characters of applied objects. 

Based on the framework of CORS method and 
the characters of water quality model of WDS, a new 
combinational algorithm, CORS-RBF-GA, is designed 
by us which combines the CORS framework, RBF 
network and GA to calibrate the parameters of water 
quality model. The flow chart of CORS is the same 
as the left side of Fig. 1 (step 1–6), the RBF network 
is the water quality metamodel, GA is the optimizing 
method of metamodel. In addition, the algorithm of 
CORS-RBF-GA is also reinforced by using the gener-
alization checking and cluster analysis. The algorithm 
of CORS-RBF-GA is presented as follows. 

Step 1 is to select initial evaluated points. Set and 
select a finite initial set of points S = {x1,x2,…,xk} 
which are prepared for water quality simulation and 
fit the RBF network. S is a vector if only one param-
eter is calibrated, and a matrix with m rows (number 
of calibrated parameters) and k columns (number of 
points) when more than one parameter are present. The 
method of selecting evaluated points includes factorial 
design (grid), Latin hypercube and orthogonal arrays. 
The most known technique is the factorial design which 
requires fitness function evaluations at KN design points, 

where N is the number of design variables and K the 
number of levels defined between the lower and upper 
bounds of each variable. Usually, K is 2 or 3, depending 
on the effects we want to model [5]. After experimental 
comparison, we found that the number of experimental 
points should be beyond 100 for more than two param-
eters that should be calibrated. 

Step 2 is to do water quality simulation. Data from 
water quality simulation can be used directly or changed 
to other forms, which typically are transformed into dis-
crepancy between calculated data and measured data. 
These data will play a role as output of RBF network, 
while the evaluated points as input. Basis function em-
ploys the Gaussian function because MATLAB is based 
on this one. In this paper the predicted error, f(x), is 
adopted to the output of RBF network and defined as 
follows in order to calibrated the parameters accord-
ing to minimize the discrepancy. The data of boundary 
condition of WDS are manually treated firstly with the 
goal of focusing on this method singly. 

(9)         f1(x) = gi(x) – m1    i = 1,...,n 

(10)  
  
where: gi(x) is the calculated value of number i moni-
toring node; mi is the measured value of number i 
monitoring node; n is the total number of monitoring 
nodes. Note that the calculated values of monitoring 
nodes are zero in the early period of extended period 
simulation of WDS until the disinfectant pass through 
these nodes. So f(x) must start to accumulate from the 
time that is above water age of every node. 

Step 3 is to save evaluated points and the value of 
accumulated error. Evaluated points are saved into 
S = {x1,x2,…,xk} and the values of error into E = 
{f(x1),…,f(xk)}. When the following optimization pro-
duces new data, S adds one point after the last point 
and E adds the evaluated value with respect to the new 
added point. Note that to prevent oscillation in the 
RBF interpolation, the large error values should be 
replaced by the median of all available error function 
values [13]. 

Step 5 is to fit or update RBF. The RBF is an ap-
proximated metamodel as a surrogate of WDS, which 
is key part of the whole algorithm. Based on data set S 
and E, the former is input and the latter is output, new 
RBF network will be trained and updated in each itera-
tion. For practical purposes, it should be intuitively clear 
that the rate of convergence is somehow dependent on 
how well the RBF model approximates the water quality 
model and also on how well we solve the optimization 
problem on the RBF network. In the first time, we 
should optimize the spread parameter of RBF which 
is so important that directly influences the degree of 
approximation. Quasi-Newton methods or GA [9] can 
be used to solve this optimization. After the optimized 
spread, a parameter has been found and a new RBF 
network should be trained again. 

Step 6 can use the different optimization method, 
such as non-linear programing or GA, to find a mini-
mized point in the surface of RBF function which will 
be the next evaluated point. 

Fig. 1. Flow chart calibration of water quality of WDS.
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In a former research, we found that non-linear 
programing is easy to make a matrix close to singu-
lar or badly scaled, thus it will result in optimization 
terminated early. GA is recommended as a universal 
optimization method. Objective function and constraint 
conditions are presented as follows. 

(11)  Minimize  f(x) 

Subject to: 

(12) ||x – xj|| ≥ βΔ   j = 1,…,k + i – 1,   
              xj ∈ S  0 ≤ β ≤ 1 

(13)  

where Δi = max  min ||x – xj||, x– is the cover points 
defined beforehand which covers the whole hypercube 
domain. 

Function f’ is the RBF. x(i) and x(k) are the ele-
ments of the vector of x, m is the dimension of x. The 
purpose of the constraint is to drive the algorithm 
towards unexplored regions and prevent the algorithm 
from prematurely converging to some possibly unde-
sirable points. To be able to perform both local and 
global search in this scheme, we use β to control the 
distance range from high values for global search to 
low values for local search. Detailed proved process can 
be referred to in [8]. Inequality constraints (13) restrict 
the grouping parameters (wall reaction coefficients), 
assuming that there are no great discrepancies among 
the parameters. 

Steps 4 and 7 are identification of convergence con-
dition and obtainment of optimized values via optimi-
zation of RBF metamodel. According to the following 
case study, we found that many combinations of wall 
reaction parameters can have a near the same influence 
on predictions of monitoring points in WDS. So, we 
have to select the point as the final result that has the 
best generalization ability among the options. 

Step 8 utilizing the data from step 8 compares the 
generalization ability of given new evaluated points 
from RBF optimization, which computes individually 
the total predicted error of a given period of water qual-
ity behaviors. Step 9 is the end of methodology. 

This method is realized in MATLAB programing 
language, and RBF network and GA call functions 
of corresponding toolbox. Water quality modeling 
is operated using EPANET programer’s toolkit, the 
EPANET2.dll is incorporated into the main program. 

Case study 

The forced convection core cooling (FCCC) system will 
be responsible for removing heat produced by fuel ele-
ments, as well as other elements inside the core, while the 
reactor is in operation at powers greater than 500 kW. (In 
fact operation with natural convection cooling at powers 
as high as 800 kW is allowable from a thermohydraulic 
point of view, but considerations on the doses at pool 
surface limit the power to 500 kW, [1]). 

The forced convection cooling will be achieved as a 
result of operation which makes up the primary cool-

ing system. The pumps have an inertia flywheel which, 
should they come out of service, will permit maintaining 
for a certain period of time the required flow to dissipate 
core decay heat produced immediately after a reactor 
shutdown, and until such a time as natural convection 
core cooling will prove to be sufficient (NCCC). 

The primary system, whose diagram is shown in 
Fig. 2, consists of a closed circuit through which the 
coolant is made to circulate driven by two centrifugal 
pumps (B), making it pass through the core in an up-
ward flow and then through heat exchangers (H) where 
heat generated in the core is eventually transferred to 
the secondary system. 

At the outlet of the chimney, the primary circuit 
branches off in two non-redundant trains at 50% each 
with similar characteristics. Each train has been pro-
vided with two identical pumps in parallel (one in stand 
by), plus a heat exchanger. Both trains return separately 
to the reactor pool and their piping will descend to the 
base of the core in order to inject coolant from below. 
In this manner, both natural convection as well as 
forced convection share the same upwards direction, 
thus avoiding flow inversion phenomena. 

Since the upper part of the chimney is open in order 
to allow access to the core and coolant circulation by 
natural convection when the reactor is shutdown or 
operating at very low powers, a small water flow will 
be forced to descend through the chimney in order to 
diminishing the possible arrival of activated water from 
the core to pool water level. Due to this reason, at the 
heat exchangers outlet, a small flow from the primary 
will be diverted to the reactor pool cooling system 
(RPCS), through the interconnection system, and will 
then return to the reactor pool having first passed 
through a decay tank. This transfer from one circuit to 
another will enable to compensate the water taken from 
the pool through the chimney (see Fig. 2). 

To enhance the accuracy of calibration, in this case 
we use a cluster analysis method, a hierarchical cluster 
analysis, to divide the whole pipes into six groups. 
Hierarchical cluster analysis attempts to identify rela-
tively homogeneous groups of wall reaction coefficient 
are based on selected characteristics, which include pipe 
diameters, pipe materials, construction time, flow rates, 
flow velocity, location. 

Fig. 2. Primary cooling system.
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The initial evaluated points are obtained using a 
simple grid method. Using this method, the results 
presented in the paper can be obtained soon [2]. We 
select 100 data to train the RBF network and 28 data 
to optimize the spread parameter of RBF network. The 
following process shows the real optimization process in 
Fig. 3 that surges in the early stage and smoothes or cov-
erage to the minimum in the latter. The RBF network 
stability is shorter because of the contribution of the 
spread parameter optimization. In the early stage the 
line surges a short time, then becomes gently inclined. 
But there are two unwilling juts in the range from no. 22 
to 28. It testifies that some margin inputs, for example 
[–0.5, –6.0, –6.0, –3.5, –4.2, –6.0], will bring more total 
error because short age of initial fitting points cannot fit 
the RBF surface more accurate in margin region, while 
these can do well in the middle of network. 

One of the comparisons of predicted values and 
measured values is shown in Fig. 4. From the figure 
you can find the predicted line is smoother than the 
measured one, there is a big difference in the early 
time of every day from 1 to 9 o’clock. According to 
simply research, we find that the possible reason is the 
influence of flow velocity the same as other research 
findings [8]. Another possible reason may be that the 
pipe water is still in the leading out thin branch pipe at 
the water quality monitoring station, which will be no 
refilling chlorine into this pipe at this period. While the 
simulation concentration is upstream pipeline relative 
to this monitoring location in WDS, this difference of 
position contribute to the simulating error. In order to 
solve this problem the deeper research should be ex-
ecuted in the future. Comparison of the computational 
times is listed in Table 1, which compares EPANET 
linked to GA and the new method presented in this pa-
per. The total computing time of RBF metamodeling is 
only 10.3% of the one of EPANET linked to GA which 
is adopted normally. Every water quality simulation 
needs 3 min, and the sampling data are produced after 
water quality simulations based on every initial evalu-
ated point. Thus, the sampling computing time should 
be 128 × 3 min, namely 6 h and 24 min. Optimization 
time of the former method is calculated by assuming 
GA parameters adopted normal values, 100 generations 

and 20 populations. Generalization ability checking is 
carried out during a 12 d long simulation and finds an 
optimal value in the end. 

Conclusion 

In this paper we performed a multi-objective optimiza-
tion by means of genetic algorithms. The genetic algo-
rithm adopted considers a population of chromosomes, 
each one encoding a different solution to the optimiza-
tion problem. For a given solution, there are more than 
one objective to be evaluated, so that the performance 
of any given candidate solution is evaluated introducing 
the concepts of Pareto optimality and dominance. The 
proposed multi-objective genetic algorithm approach 
has been applied for determining the optimal test inter-
vals of the components of a safety system in a nuclear 
research reactor. The optimization performed with 
respect to availability, economic and workers’ safety 
objectives has shown potentials of the approach and 
the benefits which can derive from a more informative 
multi-objective framework. 

This paper presents a new method, using RBF meta-
modeling as a surrogate to be optimized for the purpose 
of decreasing the times of time-consuming water quality 
simulation. The algorithm succeeds in calibrating the 
parameters of water quality model more efficiently than 
EPANET linked to GA. In order to assure the quality 
of optimization and avoid traps, key points should be 
restated and obeyed: 
1. The sampling data should be adequate, in general, 

above 100. 
2. The spread parameter should be optimized; this will 

enhance the fitting level. 
3.  The constraints between two parameters should add 

to the constraint conditions of main optimization. 
4. Generalization ability checking can decrease the 

influence of local target value, namely measured 
value. 
Although the new method can solve the problem 

of computational time, there also are some works to 
be researched more deeply in the future, such as con-
sidering data uncertainty the same as former hydraulic 

Fig. 4. One of the comparisons of predicted values and mea-
sured values.

Fig. 3. The process of optimization via RBF approximation-
-optimization process. 

Table 1. Computational comparison of times 

Methods Sampling data 
(h : min)

Training optimization
(h : min)

Generalization 
checking Total

GA 100 : 00 100 : 00
RBF 6 : 24     2 : 35 1 : 30   10 : 30
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calibration in the water quality calibration and quan-
tification of other influence factors to bulk and wall 
reaction coefficients. 
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