PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo modeling of electron beams from a NEPTUN 10PC medical linear accelerator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Monte Carlo (MC) simulation of radiation transport is considered to be one of the most accurate methods of radiation therapy dose calculation. With the rapid development of computer technology, MC-based treatment planning for radiation therapy is becoming practical. A basic requirement for MC treatment planning is a detailed knowledge of radiation beams of medical linear accelerators (linacs). A practical approach to acquire this knowledge is to perform MC simulation of radiation transport for linacs. The aims of this study were: modeling of the electron beams from the NEPTUN 10PC linear accelerator (linac) with the MC method, obtaining of the energy spectra of electron beams, and providing the phase-space files for the electron beams of this linac at different field sizes. Electron beams produced by the linac were modeled using the BEAMnrc MC system. Central axis depth-dose curves and dose profiles of the electron beams were measured experimentally and also calculated with the MC system for different field sizes and energies. In order to benchmark the simulated models, the percent depth dose (PDD) and dose-profile curves calculated with the MC system were compared with those measured experimentally with diode detectors in an RFA 300 water phantom. The results of this study showed that the PDD and dose-profile curves calculated by the MC system using the phase-space data files matched well with the measured values. This study demonstrates that the MC phase-space data files can be used to generate accurate MC dose distributions for electron beams from NEPTUN 10PC medical linac.
Słowa kluczowe
Czasopismo
Rocznik
Strony
233--238
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
Bibliografia
  • 1. Balog JP, Mackie TR,Wenman DL, Glass M, Fang G, Pearson D (1999) Multileaf collimator interleaf transmission.Med Phys 26:176–186
  • 2. Bjork P, Knoos T, Nilsson P (2002) Influence of initial electron beam characteristics on Monte Carlo calculated absorbed dose distributions for linear accelerator electron beams. Phys Med Biol 47:4019–4041
  • 3. Deasy JO, Almond PR, McEllistrem MT (1996) Measured electron energy and angular distributions from clinical accelerators. Med Phys 23:675–684
  • 4. DeMarco JJ, Solberg TD, Smathers JB (1998) A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med Phys 25:1–11
  • 5. Desobry GE, Boyer AL (1994) An analytic calculation of the energy fluence spectrum of a linear accelerator. Med Phys 21:1943–1952
  • 6. Faddegon B, Balogh J, Mackenzie R, Scora D (1998) Clinical considerations of Monte Carlo for electron radiotherapy treatment planning. Radiat Phys Chem 53:217–227
  • 7. Followill DS, Davis DS, Ibbott GS (2004) Comparison of electron beam characteristics from multiple accelerators. Int J Radiat Oncol Biol Phys 59:905–910
  • 8. IAEA (2000) Absorbed dose determination in external beam radiotherapy. IAEA Technical Reports Series no. 398. International Atomic Energy Agency, Vienna
  • 9. Jabbari N, Hashemi-Malayeri B, Farajollahi A, Kazemnejad A (2007) Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams. Nukleonika 52:97–103
  • 10. Jabbari N, Hashemi-Malayeri B, Farajollahi A, Kazemnejad A, Shafaie A, Jabbari S (2007) Comparison of MCNP4C and EGSnrc Monte Carlo codes in depth-dose calculation of low energy clinical electron beams. J Phys D: Appl Phys 40:4519–4524
  • 11. Janssen JJ, Korevaar EW, Van Battum LJ, Storchi PRM, Huizenga H (2001) A model to determine the initial phase space of a clinical electron beam from measured beam data. Phys Med Biol 46:269–286 238 N. Jabbari, B. Hashemi-Malayeri
  • 12. Jeraj R, Keall PJ, Ostwald PM (1999) Comparisons between MCNP, EGS4 and experiment for clinical electron beams. Phys Med Biol 44:705–717
  • 13. Jiang SB, Kapur A, Ma CM (2000) Electron beam modeling and commissioning for Monte Carlo treatment planning. Med Phys 27:180–191
  • 14. Kawrakow I, Rogers DWO (2006) The EGSnrc Code System: Monte Carlo simulation of electron and photon transport. NRCC Report PIRS-701. NRCC, Ottawa
  • 15. Khan FM, Doppke KP, Hogstrom KR et al. (1991) Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group no. 25. Med Phys 18:73–109
  • 16. Kok JG, Welleweerd J (1999) Finding mechanisms responsible for the spectral distribution of electron beams produced by a linear accelerator. Med Phys 26:2589–2596
  • 17. Lee PC (1997) Monte Carlo simulations of the differential beam hardening effect of a flattening filter on a therapeutic X-ray beam. Med Phys 24:1485–1489
  • 18. Ma CM, Faddegon BA, Rogers DWO, Mackie TR (1997) Accurate characterization of Monte Carlo calculated electron beams for radiotherapy. Med Phys 24:401–416
  • 19. Ma CM, Jiang SB (1999) Monte Carlo modeling of electron beams from medical accelerators. Phys Med Biol 44:R157–R189
  • 20. Ma CM, Rogers DWO (2007) BEAMDP users manual.NRCC Report PIRS-0509C (rev. A). NRCC, Ottawa
  • 21. Rogers DWO, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR (1995) BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22:503–524
  • 22. Rogers DWO, Walters B, Kawrakow I (2007) BEAMnrc users manual. NRCC Report PIRS-0509 (A). NRCC, Ottawa
  • 23. Walters B, Kawrakow I, Rogers DWO (2006) DOSXYZnrc users manual. NRCC Report PIRS-794 (rev. B). NRCC,Ottawa
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0008-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.