Plutonium and ¹³⁷Cs in forest litter: an approximate map of plutonium from Chernobyl deposition in North-eastern and Eastern Poland

Kamil Brudecki, Joanna Suwaj, Jerzy W. Mietelski

Abstract. The present article contains information about the activities and origin of ¹³⁷Cs, ²³⁸Pu and ²³⁹⁺²⁴⁰Pu in the North-eastern Poland. Analyzed samples were collected in 59 locations where forest litter A_0 and humus A_1 were collected in 1991. An approximate map of the Chernobyl fallout component ²³⁹⁺²⁴⁰Pu was prepared on the basis of received results. The largest Chernobyl ²³⁹⁺²⁴⁰Pu contamination occurred in north-eastern and eastern part of the investigated area, reaching 22.1±1.6 Bq·m⁻².

Key words: plutonium • cesium • Chernobyl • hot particles • radioactive contamination • map of deposition plutonium

Introduction

The Chernobyl fallout in remote places contains only traces of non-volatile elements like plutonium, americium or strontium. The radioisotopes of non-volatile elements are transported on larger aerosols, the tiny pieces of nuclear fuel forming fallout of the so-called fuel like hot particles [5, 6]. According to numerical simulations [25], at the most north-eastern part of Poland the deposition of aerosols with aerodynamic diameters of about 4-5 µm occurred. Many of such big radioactive aerosols were "fuel like hot particles". Such particles were found in Poland by many investigators [2-4, 8-10, 15]. In 1991, a project on radionuclide deposition in all over Poland, based on mushrooms and forest litter studies, was launched. Within this project almost each forest inspectorate in Poland collected and sent us samples of forest litter and some mushrooms following our instructions. Samples were examined initially only for gamma emitters. Resulting approximate maps of deposition of different isotopes from Chernobyl fallout were already published some years ago [14, 18]. The deposition pattern of ¹⁴⁴Ce $(T_{1/2} = 284 \text{ d}, \text{ still present in the forest litter/humus in})$ 1991 or 1992 when measurements took place) was then reinterpreted by us as a possible pattern of Chernobyl -origin Pu [16] since both of them were the constituents of "fuel like hot particles". Those maps are presented in Fig. 1. Although direct measurements of Pu in forest litter from this area supported this approach, the number of analyzed there samples from North-eastern Poland was too low to produce any map directly. The

K. Brudecki, J. Suwaj, J. W. Mietelski[™] The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 83 92, Fax: +48 12 662 84 58, E-mail: Jerzy.Mietelski@ifj.edu.pl

Received: 27 February 2009 Accepted: 7 April 2009

Fig. 1. Approximate map of the ²³⁹⁺²⁴⁰Pu deposition Chernobyl fallout component in Poland, based on ¹⁴⁴Ce deposition (decay corrected for 1 September 1991). White dotted line marks area of the present study [14].

aim of the work presented now was to fill this gap and to produce an approximate map of Chernobyl-origin Pu based on all available samples from North-eastern Poland left in our laboratory from the past project from 1991. This was the subject of two works for Master of Science degree done in 2007.

Material and methods

Samples

Samples of forest litter A_0 and next layer – the humus A_1 were collected in 1991 by forest inspectorate workers following the detailed instruction prepared by us. Details of the whole project were described elsewhere [17, 19]. The whole set of samples taken from the described here analyses consisted of 59 pairs: layer A_0 from an area of 30×30 cm² and A_1 from an area of 20×20 cm². The samples were kept dry in plastic bags in the laboratory. Prior to analyses for Pu, all the samples were additionally dried over night at 105°C, homogenized by means of grinding and measured for gamma emitters using a low background gamma-ray spectrometer with an HPGe detector.

Radiochemical procedure

After gamma spectrometric measurements, all the samples were ashed at 600°C, subsamples of up to 10 g of ash were taken for radiochemical analyses. At tracer of ²⁴²Pu was added. The radiochemical procedure applied was rather standard one, which is in use in our laboratory since 1993. It follows the ideas of procedure applied in the IAEA Laboratories Seibersdorf for the Chernobyl project [12]. It consist of complete wet mineralization

using subsequently hot HF, HNO₃ and HCl (with some H_3BO_3 added), Pu oxidation step adjustment in nitric acid solution using hydrazine and NaNO₂, separation of Pu on Dowex-1 from 8 M HNO₃ with a final source preparation by means of NdF₃ co-precipitation [22]. Sources were measured using a Silena AlphaQuattro spectrometer equipped with four Canberra silicon (PIPS) detectors with 450 mm² area each. Spectra were analyzed using a home made ALF software [14] and activity concentrations as well as all other calculations were done in MS Excel file.

Quality assurance

Together with the samples we analysed two IAEA reference materials: Soil 375 and Soil 6. The recommended value for $^{239+240}$ Pu for Soil 6 is 1.01 Bq·kg⁻¹ and 95% certified value interval is $0.96 \div 1.11$ Bq·kg⁻¹. We obtained a little too low value: 0.90 ± 0.08 Bq·kg⁻¹. However, in the case of Soil 375 the recommended value for $^{239+240}$ Pu is 0.30 Bq·kg⁻¹ and the 95% certified interval is $0.26 \div 0.34$ Bq·kg⁻¹. For 238 Pu, the recommended value is 0.071 Bq·kg⁻¹ and the 95% certified interval is $0.056 \div 0.085$ Bq·kg⁻¹. Here, we obtained 0.27 ± 0.03 Bq·kg⁻¹ for $^{239+240}$ Pu and 0.071 ± 0.012 Bq·kg⁻¹ for 239 Pu. Thus, possible systematic errors should not exceed 10% of the determined values and likely are much smaller.

Calculations of Chernobyl fraction of Pu

Differences in the Pu activity ratio (²³⁸Pu/²³⁹⁺²⁴⁰Pu) in global fallout and in Chernobyl fallout allows us to distinguish them. The discussion of details for this problem was done already previously [19]. The appropriate algorithm is the following:

(1)
$$\begin{aligned} A_{239+240} &= A_g + A_{ch} \\ A_{238} &= \zeta A_g + \xi A_{ch} \end{aligned}$$

where: $A_{239+240}$ – observed activity concentration of $^{239+240}$ Pu [Bq·kg⁻¹]; A_{238} – observed activity of 238 Pu [Bq·kg⁻¹]; A_g – *a priori* unknown global fallout component of $^{239+240}$ Pu [Bq·kg⁻¹]; A_{ch} – *a priori* unknown Chernobyl fallout component of $^{239+240}$ Pu [Bq·kg⁻¹]; ζ – activity ratio 238 Pu to $^{239+240}$ Pu in global fallout (assumed 0.03); ξ – activity ratio 238 Pu to $^{239+240}$ Pu to $^{239+240}$ Pu in Chernobyl fallout (assumed 0.5).

As a solution, we have:

(2)
$$A_g = \frac{\xi A_{239+240} - A_{238}}{\xi - \zeta}$$

(3)
$$A_{ch} = \frac{-\zeta A_{239+240} + A_{238}}{\xi - \zeta}$$

Thus, the percentage *F* of Chernobyl component in the observed activity can be described as:

(4)
$$F = \frac{A_{ch}}{A_{ch} + A_g} \cdot 100\% = \frac{A_{ch}}{A_{239+240}} \cdot 100\%$$
$$= \frac{A_{238}(A_{239+240})^{-1} - \zeta}{\xi - \zeta} \cdot 100\%$$

Fig. 2. Correlation between ${}^{239+240}$ Pu and 238 Pu in A_0 layer. Fit (solid) is the regression line (y = 0.35x - 0.02). Dotted lines are the mean values for global and Chernobyl (more sloppy) fallouts.

Calculation of surface deposition

The result of measurement is the activity concentration. To turn it to deposition, an assumption must be done that the forest inspectors collecting the samples were following our instructions. Next, the following formula was applied:

$$D_{ch} = \frac{A_{ch}m}{s}$$

where: D_{ch} – Chernobyl component of ²³⁹⁺²⁴⁰Pu activity deposition in a given layer [Bq·m⁻²]; A_{ch} – taken from Eq. (3); m – mass of the whole sample from a given layer [kg]; s – surface of the layer [m²].

In the case of ¹³⁷Cs we use a similar formula. However, since we were not able to distinguish between the Chernobyl and global fallout componets (since ¹³⁴Cs was not detectable any more) in calculations of activity deposition we use the total activity concentration of ¹³⁷Cs.

Preparation of map

The map of Pu deposition was prepared using Golden Software Surfer 8. The raw data was in the form of a matrix of columns *XYZ*, were *X* and *Y* were geographical coordinates of the site and *Z* was calculated as deposition of $^{239+240}$ Pu of Chernobyl origin. The software produced from this raw data the regular grid by kriging interpolation using default values for this method. The final map was produced as contour map, filled then with patterns.

Results and discussion

Table 1 presents the results on ¹³⁷Cs and plutonium activity concentrations and depositions as well as the data on ²³⁹⁺²⁴⁰Pu Chernobyl fraction.

Received values of ¹³⁷Cs activity on the studied area was between 6 ± 1 Bq·kg⁻¹ and 2062 ± 51 Bq·kg⁻¹ in A_0 layer or from 19 ± 1 Bq·kg⁻¹ to 2346 ± 184 Bq·kg⁻¹ in A_1 layer. In both layers the average radiocesium activity was near 700 Bq·kg⁻¹. The range of the deposition in the litter layer was from 5 ± 1 Bq·m⁻² to 3516 ± 733 Bq·m⁻² and in the humus layer was from 105 ± 10 Bq·m⁻² to $11,440\pm 1100$ Bq·m⁻². The cumulated deposition values in both the examined layers was near 4 kBq·m⁻², on the average. However, some radiocesium, which was surely present in the deeper layers of soil profile, was not taken into account.

Minimum activity of the $^{239+240}$ Pu in A_0 layer was 0.02 ± 0.01 Bq·kg⁻¹, whereas the maximum activity reaches 4.01 ± 0.54 Bq·kg⁻¹. For A_1 layer, the minimum was 0.14 ± 0.02 Bq·kg⁻¹ and the maximum was 6.88 ± 0.53 Bq·kg⁻¹. Average activity in the litter layer was 1.11 Bq·kg⁻¹ and in the humus layer is larger by about two times.

Activity of the ²³⁸Pu were between 0.01 ± 0.01 Bq·kg⁻¹ to 2.09 ± 0.27 Bq·kg⁻¹ in A_0 layer and 0.02 ± 0.01 Bq·kg⁻¹ to 2.20 ± 0.31 Bq·kg⁻¹ in A_1 layer.

As can be noticed from values of factor F (defined in Eq. (4), displayed in 10th column of Table 1), the clear evidence of Chernobyl fallout was found for plutonium in booth layers. In A_0 layer this is the dominant component in the majority of samples (Fig. 2), whereas in A_1 layer it is not so common (Fig. 3). One should recall here that it is not the present situation – samples were

Fig. 3. Correlation between $^{239+240}$ Pu and 238 Pu in A_1 layer. Fit (solid) is the regression line (y = 0.18x - 0.05) Dotted lines are the mean values for global and Chernobyl (more sloppy) fallouts.

Fig. 4. Approximate map of the ²³⁹⁺²⁴⁰Pu deposition Chernobyl fallout component in North-eastern and Eastern Poland, based on samples in 59 locations (marked crosses, decay corrected for 1 September 1991).

collected only 5 years after the Chernobyl accident. In that short time plutonium cannot moved largely to deeper layers. The Chernobyl component of $^{239+240}$ Pu activity deposited in both examined layers in the studied area was near 3.4 Bq·m⁻², on the average.

The present map of the Chernobyl fallout component ²³⁹⁺²⁴⁰Pu (Fig. 4) was made on the basis of received results displayed in the last column of Table 1. The largest Chernobyl 239+240Pu contamination occurred in north-eastern and eastern parts of the investigated area and it reaches at the maximum 22.1 ± 1.6 Bq·m⁻². By definition, another half of this value was deposition of ²³⁸Pu from Chernobyl. Since samples were collected only 5 years after the Chernobyl accident, one can assume that the majority of Pu from Chernobyl was present in the analyzed two top forest litter/hums layers. This is not necessarily true in the case of Pu from global fallout, which can be already driven to deeper layers. Such situation is supported by deposition calculations made for the total Pu content. The majority of samples show a much lower total deposition than the average of 58 Bq/m² for the 50°-60° N latitude belt given in UNSCEAR reports [24]. This means that apparently an important part of global fallout plutonium is deposited deeper than the examined layers. It is very likely that it happens also in the case of ¹³⁷Cs, therefore, no attempt was made to show deposition map for radiocesium. Such maps are known for Poland [1, 23].

The presented map is, in general, confirming our earlier map (Fig. 1), which was quoted in Introduction. It supports the findings about the enhanced presence of non-volatile constituents of Chernobyl fallout in North-eastern Poland. Such a feature was reported even in very early studies [2, 20]. The Chernobyl plutonium deposition pattern seems to be similar to that for ⁹⁰Sr suggested from the studies on bilberry leaves [7]. Those findings support a general knowledge [11] of the traces of radioactive plume from Chernobyl (Fig. 5). The deposition of mostly non-volatile radioisotopes from the Chernobyl plume moving at altitude of about 500 m toward North-eastern Poland was predicted in another early paper [13]. However, the present results suggest that some deposition of non-volatile radioisotopes occurred also in Central-eastern Poland - the area of Bielsk Podlaski, Mińsk Mazowiecki or Siedlce as was already suggested by the geographical distribution of ⁹⁰Sr [7].

Figure 6 present the correlation between the ¹³⁷Cs activity and the observed activity of ²³⁹⁺²⁴⁰Pu and the Chernobyl fallout component of ²³⁹⁺²⁴⁰Pu in both layer. The lack of correlation among these elements can be noticed. This suggests that the proportions between the activity of ¹³⁷Cs and the ²³⁹⁺²⁴⁰Pu in Chernobyl plume over Poland changed from site to site with distance, since plutonium was transported on larger aerosols and likely only in plume from the initial explosion, not

hernobyl fraction for $^{239+240}$ Pu (F) and		
itte/humus samples as well as the calculated (
sotopes activity and deposition in the examined forest li	tonium fallout. All data decay corrected for 1991	
Table 1. Results of the ¹³⁷ Cs and plutonium isc	calculated values for the solely Chernobyl plutc	

calculate	d values fo	r the solely Chern	obyl plutonium fal	lout. All data deca	y corrected for 1	991				
Code	Layer	¹³⁷ Cs (Bq/m ²)	¹³⁷ Cs (Bq/m ²)	Chemical yield (%)	²³⁹⁺²⁴⁰ Pu (Bq/kg)	²³⁸ Pu (Bq/kg)	$A_{238}\!/\!A_{239+240}$	$A_{ch(239+240)}$ (Bq/kg)	F $(%)$	$A_{ch(239+240)} ({ m Bq/m^2})$
~	A_0 A_1	104 ± 4 383 ± 16	174 ± 11 2980 ± 260	90 75	0.05 ± 0.01 2.19 ± 0.14	0.01 ± 0.01 0.15 ± 0.01	0.27 ± 0.07 0.07 ± 0.01	0.03 ± 0.01 0.17 ± 0.05	52 ± 15 8 ± 3	0.043 ± 0.003 1.32 ± 0.13
13*	${\cal A}_{_1}$	423 ± 12 855 ± 23	233 ± 13 2640 ± 210	52 74	0.10 ± 0.04 0.82 ± 0.09	0.14 ± 0.05 0.26 ± 0.05	1.40 ± 0.72 0.32 ± 0.07	0.10 ± 0.04 0.50 ± 0.13	100^{**} 61 ± 17	0.055 ± 0.007 1.55 ± 0.14
15	${\cal A}_{_1}$	1637 ± 69 967 ± 47	1480 ± 150 3380 ± 270	74 80	0.93 ± 0.10 2.30 ± 0.24	0.30 ± 0.04 0.27 ± 0.06	0.32 ± 0.06 0.12 ± 0.03	0.58 ± 0.11 0.42 ± 0.14	62 ± 14 18 ± 6	0.519 ± 0.040 1.49 ± 0.15
23*	${\cal A}_{_1}$	607 ± 19 355 ± 15	620 ± 60 1800 ± 130	89 71	3.24 ± 0.27 2.70 ± 0.25	1.18 ± 0.16 0.97 ± 0.16	0.36 ± 0.06 0.36 ± 0.07	2.30 ± 0.42 1.89 ± 0.40	71 ± 14 70 ± 16	2.28 ± 0.17 9.60 ± 0.82
24	${\cal A}_{_1}$	84 ± 4 86 ± 4	58 ± 4 611 ± 55	84 82	0.48 ± 0.04 1.19 ± 0.08	0.02 ± 0.01 0.06 ± 0.01	0.05 ± 0.01 0.05 ± 0.01	0.02 ± 0.01 0.06 ± 0.03	4 5 + 3 8 + 3	$\begin{array}{r} 0.012 \pm 0.003 \\ 0.402 \pm 0.056 \end{array}$
27	${\cal A}_{_1}$	372 ± 16 518 ± 22	460 ± 30 2360 ± 200	96 06	0.68 ± 0.04 4.06 ± 0.68	0.07 ± 0.01 0.43 ± 0.10	0.11 ± 0.01 0.11 ± 0.03	0.11 ± 0.02 0.65 ± 0.24	16 ± 3 16 ± 6	0.137 ± 0.011 2.97 ± 0.31
40	${\cal A}_{1}$	363 ± 16 1060 ± 150	338 ± 23 5350 ± 840	87 87	1.57 ± 0.07 2.54 ± 0.20	0.83 ± 0.05 0.26 ± 0.05	0.53 ± 0.04 0.10 ± 0.02	1.57 ± 0.07 0.40 ± 0.12	100^{**} 16 ± 5	1.460 ± 0.076 2.02 ± 0.20
49*	${\cal A}_{_1}$	174 ± 6 562 \pm 16	104 ± 6 1280 ± 100	83 88	0.10 ± 0.01 0.97 ± 0.05	0.01 ± 0.01 0.03 ± 0.02	0.14 ± 0.05 0.03 ± 0.02	0.02 ± 0.01 0.01 ± 0.04	24 ± 10 1 ± 4	$\begin{array}{l} 0.014 \pm 0.002 \\ 0.018 \pm 0.018 \end{array}$
63	${\cal A}_{_1}$	216 ± 9 79 ± 3	406 ± 26 1530 ± 130	86 88	0.20 ± 0.02 2.22 ± 0.18	0.04 ± 0.01 0.07 ± 0.02	0.18 ± 0.04 0.03 ± 0.01	0.06 ± 0.02 < 0.06	32 ± 9 < 3	0.121 ± 0.011 < 0.24
99	${\cal A}_0$	186 ± 12 290 ± 26	483 ± 40 3770 ± 440	89 90	0.60 ± 0.07 0.87 ± 0.07	0.01 ± 0.01 0.07 ± 0.01	0.02 ± 0.01 0.08 ± 0.02	< 0.02 0.09 ± 0.03	< 3 10 ± 4	< 0.012 1.16 ± 0.12
67	${\cal A}_0$	764 ± 34 174 ± 11	550 ± 60 1130 ± 90	85 89	0.70 ± 0.06 2.30 ± 0.17	0.33 ± 0.03 0.08 ± 0.05	0.47 ± 0.06 0.04 ± 0.02	0.66 ± 0.10 0.03 ± 0.13	$\begin{array}{l} 9 \pm 16 \\ 1 \pm 5 \end{array}$	0.473 ± 0.032 0.19 ± 0.16
81	${\cal A}_0$	924 ± 59 337 ± 23	1330 ± 130 2300 ± 200	71 72	1.19 ± 0.25 4.52 ± 0.58	0.58 ± 0.11 0.22 ± 0.10	0.49 ± 0.14 0.05 ± 0.02	$1.15 \pm 0.27 \\ 0.17 \pm 0.23$	$\begin{array}{l} 97 \pm 31 \\ 4 \pm 5 \end{array}$	1.66 ± 0.14 1.18 ± 0.33
82	${\cal A}_0^{}$	103 ± 6 576 \pm 44	273 ± 21 11,000 ± 1200	80 96	0.13 ± 0.03 3.51 ± 0.40	0.03 ± 0.01 0.44 ± 0.04	0.24 ± 0.07 0.13 ± 0.02	0.06 ± 0.01 0.72 ± 0.14	44 ± 14 21 ± 5	0.151 ± 0.012 13.49 ± 1.13
83	${A_0} \\ {A_1}$	545 ± 24 348 ± 14	583 ± 39 3070 ± 260	85 85	0.21 ± 0.02 0.69 ± 0.06	0.01 ± 0.01 0.03 ± 0.01	0.05 ± 0.07 0.04 ± 0.01	0.01 ± 0.03 0.02 ± 0.02	5 ± 14 3 ± 3	$\begin{array}{l} 0.011 \ \pm \ 0.010 \\ 0.187 \ \pm \ 0.035 \end{array}$

Plutonium and ¹³⁷Cs in forest litter: an approximate map of plutonium from Chernobyl...

continued on page 204

Table 1. calculated	Results of d values for	the ¹³⁷ Cs and pluto r the solely Chernol	nium isotopes a byl plutonium fal	ctivity and depositi llout. All data deca	on in the examine y corrected for 19	ed forest litte/humu	is samples as well a	s the calculated Cher	rnobyl fraction fo	or ²³⁹⁺²⁴⁰ Pu (F) and
Code	Layer	¹³⁷ Cs (Bq/m ²)	¹³⁷ Cs (Bq/m ²)	Chemical yield (%)	²³⁹⁺²⁴⁰ Pu (Bq/kg)	²³⁸ Pu (Bq/kg)	$A_{238}\!/\!A_{239+240}$	$A_{ch(239+240)} ({ m Bq/kg})$	F (%)	$A_{ch(239+240)} ({ m Bq/m^2})$
89	A_0 A_1	487 ± 15 443 ± 10	150 ± 30 300 ± 60	82 60	0.28 ± 0.03 0.34 ± 0.03	0.16 ± 0.02 0.12 ± 0.02	0.57 ± 0.09 0.34 ± 0.06	0.28 ± 0.03 0.22 ± 0.05	100^{**} 66 ± 15	$\begin{array}{c} 0.087 \pm 0.005 \\ 0.153 \pm 0.013 \end{array}$
*06	${\cal A}_0$ ${\cal A}_1$	2062 ± 51 1990 ± 140	1072 ± 60 8220 ± 850	70 81	2.27 ± 0.20 4.40 ± 0.34	1.43 ± 0.14 0.50 ± 0.09	0.63 ± 0.08 0.11 ± 0.02	2.27 ± 0.20 0.78 ± 0.22	100^{**} 18 ± 5	$\begin{array}{r} 1.180 \pm 0.067 \\ 3.24 \pm 0.30 \end{array}$
76	${A_{ m 0L} \over A_{ m 0H}}$	925 ± 42 683 ± 85 93 ± 13	1390 ± 120 1940 ± 280 1670 ± 250	68 65 65	2.75 ± 0.28 3.92 ± 0.48 0.44 ± 0.11	$\begin{array}{l} 0.65 \pm 0.07 \\ 0.32 \pm 0.06 \\ 0.03 \pm 0.01 \end{array}$	$\begin{array}{l} 0.24 \pm 0.03 \\ 0.08 \pm 0.02 \\ 0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 1.21 \pm 0.20 \\ 0.42 \pm 0.15 \\ 0.03 \pm 0.02 \end{array}$	44 ± 8 11 ± 4 7 ± 4	$\begin{array}{c} 1.82 \pm 0.13 \\ 1.21 \pm 0.15 \\ 0.548 \pm 0.077 \end{array}$
114	${\cal A}_0$ ${\cal A}_1$	$\begin{array}{c} 241 \pm 10 \\ 19 \pm 1 \end{array}$	468 ± 31 428 ± 46	87 84	0.36 ± 0.05 0.14 ± 0.02	0.04 ± 0.01 0.02 ± 0.01	0.12 ± 0.03 0.12 ± 0.04	0.07 ± 0.02 0.03 ± 0.01	20 ± 6 19 ± 9	$\begin{array}{l} 0.138 \pm 0.013 \\ 0.623 \pm 0.070 \end{array}$
115	${\cal A}_0$ ${\cal A}_1$	33 ± 3 841 ± 39	50 ± 10 2310 ± 190	65 83	0.02 ± 0.01 2.14 ± 0.17	0.01 ± 0.00 0.48 ± 0.04	0.31 ± 0.17 0.22 ± 0.03	0.01 ± 0.00 0.89 ± 0.13	59 ± 34 41 ± 7	0.018 ± 0.002 2.44 ± 0.20
118	${\cal A}_0$ ${\cal A}_1$	520 ± 22 43 ± 1	2070 ± 130 1450 ± 120	84 81	1.61 ± 0.18 0.91 ± 0.07	0.10 ± 0.02 0.05 ± 0.01	0.06 ± 0.02 0.05 ± 0.01	0.11 ± 0.06 0.05 ± 0.03	7 ± 4 5 ± 3	0.435 ± 0.077 1.62 ± 0.23
120*	${\cal A}_0$ ${\cal A}_1$	870 ± 41 1042 ± 57	860 ± 80 3360 ± 280	73 80	3.98 ± 0.33 6.88 ± 0.53	1.83 ± 0.20 2.17 ± 0.22	0.46 ± 0.06 0.32 ± 0.04	3.64 ± 0.58 4.18 ± 0.65	$\begin{array}{l} 91 \pm 16 \\ 61 \pm 11 \end{array}$	3.66 ± 0.25 13.48 ± 1.09
126	${\cal A}_0$ ${\cal A}_1$	561 ± 27 219 ± 10	551 ± 39 851 ± 75	84 78	0.60 ± 0.05 3.31 ± 0.28	0.18 ± 0.03 0.21 ± 0.03	0.31 ± 0.05 0.06 ± 0.01	0.35 ± 0.07 0.23 ± 0.10	59 ± 12 7 ± 3	0.347 ± 0.027 0.90 ± 0.10
128	${\cal A}_0$ ${\cal A}_1$	1230 ± 250 192 ± 27	3520 ± 730 3820 ± 610	89 95	0.80 ± 0.07 1.14 ± 0.08	0.26 ± 0.03 0.07 ± 0.01	0.32 ± 0.05 0.06 ± 0.01	0.50 ± 0.08 0.07 ± 0.04	62 ± 12 6 ± 3	1.43 ± 0.10 1.43 ± 0.18
131*	${\cal A}_0$ ${\cal A}_1$	462 ± 19 787 ± 32	470 ± 50 2150 ± 170	75 69	1.95 ± 0.21 5.61 ± 0.48	0.52 ± 0.19 2.20 ± 0.31	0.27 ± 0.10 0.39 ± 0.06	0.98 ± 0.42 4.32 ± 0.81	50 ± 22 77 ± 16	1.01 ± 0.14 11.87 ± 0.99
142*	${\cal A}_0$ ${\cal A}_1$	360 ± 10 790 ± 24	270 ± 30 2230 ± 160	37 60	3.37 ± 0.35 4.78 ± 0.41	2.09 ± 0.27 0.71 ± 0.23	0.62 ± 0.10 0.15 ± 0.05	3.37 ± 0.35 1.21 ± 0.51	100^{**} 25 ± 11	2.50 ± 0.15 3.38 ± 0.38
145	${\cal A}_0$ ${\cal A}_1$	1920 ± 130 420 ± 20	2630 ± 270 1370 ± 110	56 81	1.39 ± 0.12 5.32 ± 0.87	0.50 ± 0.05 0.27 ± 0.10	0.36 ± 0.05 0.05 ± 0.02	0.97 ± 0.15 0.23 ± 0.24	70 ± 12 4 ± 5	1.33 ± 0.09 0.74 ± 0.17
155	${\cal A}_0$	87 ± 3 397 ± 25	52 ± 3 1410 ± 140	89 83	0.12 ± 0.03 0.46 ± 0.03	0.01 ± 0.01 0.05 ± 0.01	0.09 ± 0.03 0.10 ± 0.01	0.02 ± 0.01 0.07 ± 0.02	14 ± 7 15 ± 4	$\begin{array}{l} 0.010 \ \pm \ 0.001 \\ 0.247 \ \pm \ 0.022 \end{array}$
161^{*}	${\cal A}_0^{}$	260 ± 8 1026 ± 29	208 ± 12 2370 ± 190	87 89	0.44 ± 0.07 3.83 ± 0.28	0.25 ± 0.06 0.53 ± 0.06	0.57 ± 0.17 0.14 ± 0.02	0.44 ± 0.07 0.88 ± 0.18	100^{**} 23 ± 5	0.352 ± 0.024 2.04 ± 0.17
continueo	1 on page 2	.05								

Table 1. calculate	Results of a values for	the ¹³⁷ Cs and plute r the solely Cherno	onium isotopes ac	tivity and depositi lout. All data deca	on in the examine y corrected for 19	ed forest litte/humu 191 (cont.)	us samples as well a	s the calculated Che	rnobyl fraction fo	or ²³⁹⁺²⁴⁰ Pu (<i>F</i>) and
Code	Layer	¹³⁷ Cs (Bq/m ²)	¹³⁷ Cs (Bq/m ²)	Chemical yield (%)	²³⁹⁺²⁴⁰ Pu (Bq/kg)	²³⁸ Pu (Bq/kg)	$A_{238}\!/A_{239+240}$	$A_{di(239+240)} ({ m Bq/kg})$	F $(%)$	$A_{ch(239+240)} ({ m Bq/m}^2)$
162	A_0 A_1	551 ± 23 513 ± 32	836 ± 55 1320 ± 130	89 91	0.23 ± 0.02 0.25 ± 0.02	0.10 ± 0.01 0.08 ± 0.01	0.43 ± 0.05 0.32 ± 0.04	0.20 ± 0.03 0.16 ± 0.02	85 ± 14 62 ± 11	$\begin{array}{c} 0.297 \pm 0.020 \\ 0.401 \pm 0.032 \end{array}$
167	${\cal A}_{_1}$	396 ± 11 1819 ± 42	340 ± 30 2760 ± 270	71 68	0.13 ± 0.01 1.44 ± 0.11	0.08 ± 0.01 0.33 ± 0.03	0.60 ± 0.10 0.23 ± 0.03	0.13 ± 0.01 0.60 ± 0.10	100^{**} 42 ± 7	$\begin{array}{l} 0.113 \pm 0.006 \\ 0.912 \pm 0.074 \end{array}$
178	${\cal A}_0$	479 ± 24 2350 ± 180	610 ± 60 $11,000 \pm 1100$	59 90	0.26 ± 0.02 1.44 ± 0.15	0.11 ± 0.02 0.48 ± 0.06	0.43 ± 0.08 0.33 ± 0.05	0.22 ± 0.04 0.93 ± 0.16	84 ± 18 65 ± 13	$\begin{array}{l} 0.279 \pm 0.022 \\ 4.55 \pm 0.37 \end{array}$
179*	${\cal A}_0$	1720 ± 140 775 ± 56	2050 ± 230 5260 ± 550	65 80	1.29 ± 0.10 1.39 ± 0.15	0.47 ± 0.07 0.04 ± 0.12	0.36 ± 0.06 0.03 ± 0.08	0.92 ± 0.18 < 0.25	71 ± 15 < 18	1.120 ± 0.039 < 0.011
182	${\cal A}_{_1}$	434 ± 13 389 ± 34	616 ± 36 4950 ± 560	87 85	1.63 ± 0.14 0.81 ± 0.06	0.07 ± 0.01 0.06 ± 0.09	0.04 ± 0.01 0.08 ± 0.11	0.05 ± 0.04 0.08 ± 0.19	3 ± 2 10 ± 24	0.072 ± 0.017 1.01 ± 0.49
184^{*}	${\cal A}_0$	606 ± 43 402 ± 9	1020 ± 100 460 ± 60	65 71	2.06 ± 0.13 1.64 ± 0.12	0.73 ± 0.05 0.24 ± 0.03	0.35 ± 0.03 0.15 ± 0.02	1.42 ± 0.19 0.41 ± 0.08	69 ± 10 25 ± 5	2.38 ± 0.15 0.466 ± 0.040
186^{*}	${\cal A}_{_1}$	203 ± 8 1265 ± 71	201 ± 13 3910 ± 370	65 80	0.07 ± 0.04 2.27 ± 0.19	0.04 ± 0.05 1.34 ± 0.13	0.57 ± 0.72 0.59 ± 0.07	0.07 ± 0.04 2.27 ± 0.19	100^{**} 100^{**}	0.069 ± 0.012 7.01 ± 0.54
190	${\cal A}_0$	807 ± 33 1950 ± 180	610 ± 70 9400 ± 1000	55 89	0.42 ± 0.04 6.31 ± 0.81	0.18 ± 0.03 0.40 ± 0.08	0.43 ± 0.08 0.06 ± 0.01	0.36 ± 0.07 0.45 ± 0.22	86 ± 19 7 ± 4	0.271 ± 0.021 2.17 ± 0.26
197	$A_0 \ {f A}_1$	1538 ± 91 1020 ± 240	2060 ± 200 6700 ± 1600	74 84	0.58 ± 0.05 4.32 ± 0.43	0.18 ± 0.03 0.26 ± 0.06	0.32 ± 0.06 0.06 ± 0.01	0.36 ± 0.07 0.27 ± 0.15	62 ± 14 6 ± 4	0.478 ± 0.038 1.80 ± 0.24
202	${\cal A}_{_1}$	111 ± 4 1282 ± 75	80 ± 10 3800 ± 330	71 59	0.08 ± 0.01 2.05 ± 0.23	0.01 ± 0.01 0.49 ± 0.06	0.19 ± 0.07 0.24 ± 0.04	0.03 ± 0.01 0.91 ± 0.17	34 ± 15 45 ± 10	0.017 ± 0.002 2.71 ± 0.23
207	${\cal A}_0^{}$	763 ± 30 1998 ± 95	633 ± 40 5240 ± 470	79 95	0.21 ± 0.02 2.26 ± 0.21	0.09 ± 0.01 0.90 ± 0.08	0.41 ± 0.05 0.40 ± 0.05	0.17 ± 0.02 1.77 ± 0.26	80 ± 14 78 ± 14	0.139 ± 0.009 4.63 ± 0.37
209	${\cal A}_0$	1214 ± 50 303 ± 13	2900 ± 190 1860 ± 160	87 89	0.84 ± 0.07 3.10 ± 0.25	0.23 ± 0.03 0.12 ± 0.06	0.28 ± 0.04 0.04 ± 0.02	0.44 ± 0.08 0.06 ± 0.14	53 ± 11 2 ± 5	$\begin{array}{c} 1.053 \pm 0.080 \\ 0.36 \pm 0.18 \end{array}$
222	${\cal A}_0$	83 ± 3 186 ± 12	$\begin{array}{c} 20 \pm 10\\ 2190 \pm 180 \end{array}$	75 75	0.14 ± 0.01 1.69 ± 0.12	0.04 ± 0.01 0.06 ± 0.01	0.32 ± 0.03 0.04 ± 0.01	0.08 ± 0.01 0.02 ± 0.04	61 ± 9 1 ± 2	$\begin{array}{l} 0.025 \pm 0.002 \\ 0.246 \pm 0.099 \end{array}$
224*	A_0 A_1	865 ± 65 374 ± 23	940 ± 110 2320 ± 190	59 68	3.40 ± 0.25 5.27 ± 0.50	1.74 ± 0.16 1.53 ± 0.27	0.51 ± 0.06 0.29 ± 0.06	3.40 ± 0.25 2.92 ± 0.66	100^{**} 55 ± 14	3.70 ± 0.20 18.39 ± 1.61

Plutonium and ¹³⁷Cs in forest litter: an approximate map of plutonium from Chernobyl...

205

continued on page 206

Table 1.	Results of d values for	the ¹³⁷ Cs and pluto	byl plutonium fal	tivity and depositi lout. All data deca	on in the examine y corrected for 19	ed forest litte/humu 191 (<i>cont</i> .)	ıs samples as well a	s the calculated Che	ernobyl fraction f	or ²³⁹⁺²⁴⁰ Pu (F) and
Code	Layer	¹³⁷ Cs (Bq/m ²)	¹³⁷ Cs (Bq/m ²)	Chemical yield (%)	²³⁹⁺²⁴⁰ Pu (Bq/kg)	²³⁸ Pu (Bq/kg)	$A_{238}/A_{239+240}$	$A_{ch(239+240)}$ (Bq/kg)	F $(%)$	$A_{ch(239+240)} ({ m Bq/m^2})$
232	A_0 A_1	800 ± 67 674 ± 81	1300 ± 150 8100 ± 1100	62 56	0.33 ± 0.04 0.61 ± 0.05	0.20 ± 0.03 0.13 ± 0.03	0.62 ± 0.11 0.21 ± 0.06	0.33 ± 0.04 0.24 ± 0.07	100^{**} 39 ± 13	0.537 ± 0.033 2.89 ± 0.28
236	${\cal A}_0$ ${\cal A}_1$	310 ± 16 175 ± 15	980 ± 80 2660 ± 270	77 61	0.75 ± 0.06 1.02 ± 0.08	0.20 ± 0.04 0.19 ± 0.02	0.27 ± 0.06 0.18 ± 0.03	0.38 ± 0.09 0.33 ± 0.07	50 ± 13 33 ± 7	1.19 ± 0.11 5.07 ± 0.43
246	${\cal A}_0$ ${\cal A}_1$	80 ± 5 565 ± 14	$\begin{array}{c} 20 \pm 10\\ 860 \pm 90 \end{array}$	81 74	0.04 ± 0.02 0.76 ± 0.07	0.01 ± 0.01 0.23 ± 0.03	0.30 ± 0.21 0.30 ± 0.05	0.02 ± 0.01 0.45 ± 0.08	58 ± 42 58 ± 12	$\begin{array}{l} 0.005 \pm 0.001 \\ 0.676 \pm 0.056 \end{array}$
248*	${A_{ m 0L} \over A_{ m 0H}}$	539 ± 42 1020 ± 120 234 ± 12	$1010 \pm 110 \\ 2450 \pm 330 \\ 2170 \pm 160$	67 83 86	0.64 ± 0.09 1.91 ± 0.16 0.84 ± 0.07	0.28 ± 0.08 0.25 ± 0.06 0.04 ± 0.05	0.44 ± 0.14 0.13 ± 0.03 0.05 ± 0.06	0.55 ± 0.18 0.41 ± 0.14 0.03 ± 0.11	87 ± 31 21 ± 7 4 ± 13	$\begin{array}{l} 1.04 \pm 0.11 \\ 0.99 \pm 0.11 \\ 0.29 \pm 0.20 \end{array}$
249	${\cal A}_0$ ${\cal A}_1$	679 ± 23 508 ± 13	570 ± 60 1490 ± 110	74 82	2.21 ± 0.31 4.15 ± 0.36	1.18 ± 0.15 1.34 ± 0.12	0.53 ± 0.10 0.32 ± 0.04	2.21 ± 0.31 2.58 ± 0.38	100^{**} 62 ± 11	1.84 ± 0.12 7.57 ± 0.61
250	${\cal A}_0$ ${\cal A}_1$	605 ± 25 186 ± 7	965 ± 62 3420 ± 290	87 79	0.41 ± 0.04 0.35 ± 0.03	0.04 ± 0.01 0.08 ± 0.01	0.10 ± 0.02 0.23 ± 0.04	0.06 ± 0.01 0.15 ± 0.03	14 ± 4 42 ± 9	0.093 ± 0.008 2.70 ± 0.23
275	${\cal A}_0$ ${\cal A}_1$	1001 ± 25 746 ± 34	670 ± 70 3450 ± 250	64 76	2.12 ± 0.32 2.68 ± 0.25	0.31 ± 0.07 0.18 ± 0.04	0.14 ± 0.04 0.07 ± 0.02	0.52 ± 0.17 0.20 ± 0.10	24 ± 9 8 ± 4	0.348 ± 0.038 0.95 ± 0.12
279	${\cal A}_0$ ${\cal A}_1$	89 ± 4 775 ± 19	33 ± 2 860 ± 68	85 88	0.02 ± 0.01 0.37 ± 0.03	< 0.01 0.08 ± 0.01	0.17 ± 0.11 0.22 ± 0.03	0.01 ± 0.01 0.15 ± 0.02	30 ± 22 41 ± 7	0.002 ± 0.001 0.167 ± 0.014
405	${\cal A}_0$ ${\cal A}_1$	754 ± 23 79 ± 3	1310 ± 110 1010 ± 60	77 66	3.98 ± 0.66 1.28 ± 0.10	0.26 ± 0.08 0.05 ± 0.01	0.07 ± 0.02 0.04 ± 0.01	0.30 ± 0.20 0.03 ± 0.04	8 + 5 + 3	0.53 ± 0.11 0.375 ± 0.096
414	${\cal A}_0$ ${\cal A}_1$	146 ± 6 780 ± 27	90 ± 10 4310 ± 280	50 56	0.21 ± 0.03 1.27 ± 0.12	0.07 ± 0.03 0.35 ± 0.07	0.33 ± 0.13 0.27 ± 0.06	0.13 ± 0.06 0.66 ± 0.17	64 ± 28 52 ± 14	0.085 ± 0.011 3.66 ± 0.33
435	${\cal A}_0$ ${\cal A}_1$	2020 ± 82 526 ± 23	2420 ± 160 1650 ± 140	79 89	2.88 ± 0.54 4.20 ± 0.56	1.28 ± 0.22 0.28 ± 0.05	0.45 ± 0.11 0.07 ± 0.01	2.54 ± 0.55 0.33 ± 0.14	88 ± 25 8 ± 3	3.04 ± 0.25 1.04 ± 0.12
438	${\cal A}_0$ ${\cal A}_1$	249 ± 9 86 ± 4	330 ± 30 320 ± 20	93 82	4.01 ± 0.54 2.24 ± 0.12	1.78 ± 0.22 0.16 ± 0.03	0.44 ± 0.08 0.07 ± 0.02	3.53 ± 0.60 0.19 ± 0.09	88 ± 19 9 ± 4	4.71 ± 0.34 0.720 ± 0.084
443	${\cal A}_0$ ${\cal A}_1$	440 ± 14 688 ± 21	510 ± 50 7740 ± 460	83 76	1.34 ± 0.12 1.63 ± 0.16	0.10 ± 0.05 0.10 ± 0.01	0.08 ± 0.04 0.06 ± 0.01	0.14 ± 0.12 0.10 ± 0.05	10 ± 9 6 ± 3	0.159 ± 0.042 1.11 ± 0.13
448	${\cal A}_0$ ${\cal A}_1$	205 ± 9 195 ± 9	407 ± 27 4160 ± 360	91 90	0.36 ± 0.05 0.48 ± 0.05	0.09 ± 0.04 0.10 ± 0.04	0.24 ± 0.13 0.20 ± 0.08	0.16 ± 0.10 0.18 ± 0.09	45 ± 27 37 ± 18	0.324 ± 0.059 3.79 ± 0.46
continue	d on page 2	07								

206

atonium isotopes ; nobyl plutonium f:	activity and depositial allout. All data dece	ion in the examin ay corrected for 1	ned forest litte/hum 991 (cont.)	us samples as well a	is the calculated Che	rnobyl Iraction	for 237240 Pu (F) and
¹³⁷ Cs (Bq/m ²)	Chemical yield (%)	²³⁹⁺²⁴⁰ Pu (Bq/kg)	²³⁸ Pu (Bq/kg)	$A_{238}/A_{239+240}$	$A_{ch(239+240)} ({ m Bq/kg})$	F $(%)$	$A_{ch(239+240)}$ (Bq/m ²)
170 ± 20	71	0.86 ± 0.08	0.23 ± 0.04	0.26 ± 0.05	0.42 ± 0.09	49 ± 11	0.460 ± 0.038
4780 ± 300	84	3.52 ± 0.42	0.23 ± 0.08	0.06 ± 0.02	0.26 ± 0.18	7 ± 5	1.51 ± 0.24
9 ± 2	83	0.19 ± 0.03	0.01 ± 0.01	0.07 ± 0.02	0.02 ± 0.01	9 ± 4	0.025 ± 0.004

Table 1. Results of the ¹³⁷Cs andcalculated values for the solely C

¹³⁷Cs (Bq/m²)

Layer

Code

727	A_0	153 ± 5	170 ± 20	71	0.86 ± 0.08	0.23 ± 0.04	0.26 ± 0.05	0.42 ± 0.09	49 ± 11	0.460 ± 0.038
00+	A_1	824 ± 26	4780 ± 300	84	3.52 ± 0.42	0.23 ± 0.08	0.06 ± 0.02	0.26 ± 0.18	7 ± 5	1.51 ± 0.24
634	A_0	6 ± 1	9 ± 2	83	0.19 ± 0.03	0.01 ± 0.01	0.07 ± 0.02	0.02 ± 0.01	9 ± 4	0.025 ± 0.004
C0+	A_1	226 ± 14	105 ± 10	89	0.27 ± 0.03	0.03 ± 0.01	0.12 ± 0.02	0.05 ± 0.01	19 ± 5	0.023 ± 0.002
774	A_0	22 ± 3	5 ± 1	86	0.05 ± 0.02	0.01 ± 0.01	0.16 ± 0.08	0.01 ± 0.01	27 ± 14	0.003 ± 0.001
00+	A_1	76 ± 4	224 ± 21	92	0.20 ± 0.02	0.02 ± 0.01	0.12 ± 0.03	0.04 ± 0.01	19 ± 6	0.111 ± 0.011
* Resu ** In f	ult taken fron urther calcul	n earlier work [19]. ations assumed 100%.								

Fig. 5. Migration of the Chernobyl radioactive cloud over Poland [11].

from the later fire. The mixing origin (Chernobyl/global fallouts) of radiocesium also acts destructively towards correlations.

Dosimetric aspect of the presence of Pu in the environment of Poland was a subject of study based on hospital diet [21]. The inhalation of Pu by Polish subjects was not investigated yet. We hope that the presented here approximate map could be helpful for future retrospective studies in this field.

Conclusion

The results on radiocesium and plutonium activity and deposition in forest litter presented now will contribute to database on the radioactive contamination in Polish forests. The presented approximate map of Pu of Chernobyl origin seems to give some general overview on the scale and deposition pattern of the Chernobyl-origin Pu in Poland. The maximum deposition of this plutonium (including ²³⁸Pu) seems to be below a half of the mean global fallout values for Poland. The north-eastern part of Poland (for example, Augustów Primeval Forest) seems to be the site with the highest values of Chernobyl-origin Pu. Enhanced levels of Pu can be found also in the area of Mińsk Mazowiecki–Siedlce–Bielsk Podlaski.

Fig. 6. Correlation between ¹³⁷Cs activity and (a, b) the total activity of $^{239+240}$ Pu or (c, d) 137 Cs with the solely Chernobyl-origin activity of $^{239+240}$ Pu. The top row concerns forest litter layer, the bottom concerns forest humus layer. Data for 1991.

References

- Biernacka M, Henschke J, Jagielak J (1991) The radiological map of Poland. Bezpieczeństwo Jądrowe i Ochrona Radiologiczna 8:3–8 (in Polish)
- Broda R (1987) Gamma spectroscopy analysis of hot particles from the Chernobyl fallout. Acta Phys Pol B 18;10:935–950
- Broda R, Kubica B, Szeglowski Z, Zuber K (1989) Alpha emitters in Chernobyl hot particles. Radiochim Acta 48:89–96
- Broda R, Mietelski JW, Sieniawski J (1992) Radioactive ¹²⁵Sb and ⁶⁰Co in "Ruthenium" hot particles from Chernobyl fallout. J Radioanal Nucl Chem Lett 166:173–180
- 5. Cuddlhy RG, Finch GL, Newton GJ *et al.* (1989) Characteristics of radioactive particles released from the Chernobyl nuclear reactor. Environ Sci Technol 23:89–95
- 6. Devell L, Tovedal H, Bergstrom U, Appelgreen A, Chyssler J, Anderson L (1986) Initial observation of fallout from reactor accident at Chernobyl. Nature 321:192–193
- Gaca P, Skwarzec B, Mietelski JW (2006) Geographical distribution of ⁹⁰Sr contamination in Poland. Radiochim Acta 94:175–179
- Jaracz P, Mirowski S, Piasecki B, Wilhelmi Z (1992) New data on hot particles from the Chernobyl accident. In: Proc of the Int Symp Radioecology: Chem Speciation – Hot Particles, 12–16 October 1992, Znojmo, Czech Republic, pp 6–12
- Jaracz P, Mirowski S, Trzcińska A et al. (1995) Calculation and measurements of ¹⁵⁴Eu and ¹⁵⁵Eu in fuel-like "hot particles" from Chernobyl fallout. J Environ Radioact 26:83–97
- Jaracz P, Piasecki E, Mirowski S, Wilhelmi Z (1990) Analysis of gamma-radioactivity of "hot particles" released after the Chernobyl accident. J Radioanal Nucl Chem Art 141:243–259
- Jaworski Z (1996) How it was with Chernobyl. Wiedza i Życie 5:24–30 (in Polish)
- LaRosa JJ, Cooper E, Ghods-Esphahani A *et al.* (1992) Radiochemical methods used by the IAEA's Laboratories at Seibersdorf for the determination of ⁹⁰Sr, ¹⁴⁴Ce and Pu radionuclides in the environment samples collected for the International Chernobyl Project. J Environ Radioact 17:183–209

- Liljenzin JO, Sklberg M, Persson G, Ingemansson T, Aronsson PO (1988) Analysis of the fallout in Sweden from Chernobyl. Radiochem Acta 43:1–25
- Mietelski JW (1994) Radioactive contamination of Polish forests. PhD Thesis. Institute of Nuclear Physics, Kraków (in Polish)
- Mietelski JW (1998) Transuranic elements and strontium-90 in samples from forests in Poland. Nukleonika 43:449–457
- Mietelski JW, Baeza AS, Guillen J *et al.* (2002) Plutonium and other alpha emitters in mushrooms from Poland, Spain and Ukraine. Appl Radiat Isot 56:717–729
- Mietelski JW, Jasińska M, Kozak K, Ochab E (1996) The method of measurements used in the investigation of radioactive contamination of forests in Poland. Appl Radiat Isot 47:1089–1095
- Mietelski JW, Jasińska M, Kubica B, Kozak K, Macharski P (1994a) Radioactive contamination of Polish mushrooms. Sci Total Environ 157:217–226
- Mietelski JW, Was B (1995) Plutonium from Chernobyl in Poland. Appl Radiat Isot 46:1203–1211
- Pieńkowski L, Jastrzębski J, Tys J et al. (1987) Isotopic composition of the radioactive fallout in Eastern Poland after the Chernobyl accident. J Radioanal Nucl Chem Lett 117:379–411
- 21. Pietrzak-Flis Z, Orzechowska G (1993) Plutonium in daily diet in Poland after the Chernobyl accident. Health Phys 65:489–492
- 22. Sill CW (1987) Precipitation of actinides as fluorides or hydroxides for high resolution alpha spectrometry. Nucl Chem Waste Mgmt 7:201–215
- Strzelecki R, Wołkowicz S, Szewczyk J, Lewandowski P (1993) Map of cesium contamination in Poland. Radiological maps of Poland. Part I. Państwowy Instytut Geologiczny, Warszawa (in Polish)
- UNSCEAR (1982) Ionizing radiation sources and biological effects. Report to the General Assembly with annexes. UN, New York
- Valkama I, Salonoja M, Toivonen H, Lahtinen J, Pöllänen R (1995) Transport of radioactive gases and particles from the Chernobyl accident, comparison of environmental measurements and dispersion calculations. In: Environmental impact of radioactive releases. IAEA--SM-339/69. IAEA, Vienna, pp 57–68