PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioaccumulation of uranium from waste water using different strains of Saccharomyces cerevisiae

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference on Recent Developments and Applications of Nuclear Technologies 15-17 September 2008, Białowieża, Poland
Języki publikacji
EN
Abstrakty
EN
Five different strains of Saccharomyces cerevisiae were tested for their abilities to accumulate uranium from waste water containing competitive ions. Samples of water passing out from a previous uranium mill were used. The strains tested possess different abilities to accumulate uranium. The kinetics of bioaccumulation, the leaching degree, the influence of cell density and their origin were investigated. Under the applied experimental conditions, more than a half of the total activity (uranium and the decay products) could be accumulated after 60 min contact time of 1 mL S. cerevisiae suspension and 5 mL of water. The other cations present in solution effectively competed for the uranium accumulation. 226Ra and its decay products were completely retained using all tested strains.
Czasopismo
Rocznik
Strony
143--148
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
autor
autor
autor
  • Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2 Flemingovo Str., 166 10 Prague 6, Czech Republic, kpopa@uaic.ro
Bibliografia
  • 1. Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072
  • 2. Bağ H, Lale M, Türker AR (1998) Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite. Talanta 47:689–696
  • 3. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals.Water Res 33:2469–2479
  • 4. Ben Omar N, Merroun LM, Gonzáles-Munoz MT, Arias JM (1996) Brewery yeast as a biosorbent for uranium. J Appl Bacteriol 81:283–287
  • 5. Ben Omar N, Merroun ML, Penalver JMA, Gonzáles--Munoz MT (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere 35:2277–2283
  • 6. Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:149–154
  • 7. Byerley JJ, Scharer JM, Charles AM (1987) Uranium(VI) biosorption from process solutions. Chem Eng J 36:B49–B59
  • 8. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330
  • 9. de Silóniz MI, Payo EM, Callejo MA, Marquina D, Peinado JM (2002) Environmental adaptation factors of two yeasts isolated from the leachate of a uranium mineral heap. FEMS Microbiol Lett 210:233–237
  • 10. Engl A, Kunz B (1995) Biosorption of heavy metals by Saccharomyces cerevisiae: effects of nutrient conditions. J Chem Technol Biotechnol 63:257–261
  • 11. Gadd GM (1986) Fungal responces towards heavy metals. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 83–110
  • 12. Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experentia 46:834–839
  • 13. Gadd GM, White C (1989) Uptake and intracellular compartmentation of thorium in Saccharomyces cerevisiae. Environ Pollut 61:187–197
  • 14. Gadd GM, White C, de Rome L (1988) Heavy metal and radionuclide uptake by fungi and yeasts. In: Norris PR,Kelly DP (eds) Biohydrometallurgy: proceedings of the 7th international symposium, Warwick 1987. Kew Surrey, Warwick, UK, pp 421–435
  • 15. Gomes DS, Fragoso LC, Riger CJ, Panek AD, Eleutherio ECA (2002) Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 1573:21–25
  • 16. Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7:311–319
  • 17. Kedari CS, Das SK, Ghosh S (2001) Biosorption of long-lived radionuclides using immobilized cells of Saccharomyces cerevisiae. World J Microbiol Biotechnol 17:789–793
  • 18. Liu N, Liao J, Luo S et al. (2003) Biosorption of 241Am by immobilized Saccharomyces cerevisiae. J Radioanal Nucl Chem 258:59–63
  • 19. Lovely DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416
  • 20. Morris K, Raiswell R (2002) Biogeochemical cycles and remobilisation of the actinide element. In: Keith- -Roach MJ, Lievens F (eds) Interactions of microorganisms with radionuclides. Elsevier, Amsterdam, pp 101–141
  • 21. Novák J, Zarevúdcka M, Wimmer Z, Tykva R (2001) A comparison of the enantioselective reduction potential of five strains of Saccharomyces cerevisiae towards a selected ketone. Biotechnol Lett 23:1517–1522
  • 22. Ohnuki T, Sakamoto F, Kozai N et al. (2003) Application of micro-PIXE technique to uptake study of cesium by Saccharomyces cerevisiae. Nucl Instrum Methods Phys Res B 210:378–382
  • 23. Özer A, Özer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater B 100:219–229
  • 24. Park JK, Lee JW, Jung JY (2003) Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enzyme Microb Technol 33:371–378
  • 25. Pérez-Corona T, Madrid Y, Cámara C (1997) Evaluation of selective uptake of selenium (Se(IV) and Se(VI)) and antimony (Sb(III) and Sb(V)) species by baker’s yeast cells (Saccharomyces cerevisiae). Anal Chim Acta 345:249–255
  • 26. Popa K, Cecal A, Drochioiu G, Pui A, Humelnicu D (2003) Saccharomyces cerevisiae as uranium bioaccumulating material: the influence of contact time, pH and anion nature. Nukleonika 48:121–125
  • 27. Silva RJ, Nitsche H (1995) Actinide environmental chemistry. Radiochim Acta 70/71:377–396
  • 28. Singleton I, Simmouns P (1996) Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. J Chem Technol Biotechnol 65:257–261
  • 29. Soudek P, Petrová Š, Benešová D, Tykva R, Vaňková R, Vanék T (2007) Comparison of 226Ra nuclide from soil by three woody species Bentula pendula, Sambucus nigra and Alaus glutinosa during the vegetation period. J Environ Radioact 97:76–82
  • 30. Strandberg GW, Shumate SE, Parrot JR (1981) Microbial cell as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245
  • 31. Tohoyama H, Shiraishi E, Amano S, Inouhe M, Joho M, Murayama T (1996) Amplification of a gene for metallothionein by tandem repeat in a strain of cadmium--resistant yeast cells. FEMS Microbiol Lett 136:269–273
  • 32. Tsuruta T (2002) Removal and recovery of uranyl ion using various microorganisms. J Biosci Bioeng 94:23–28
  • 33. Veglio’ F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316
  • 34. Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806
  • 35. Volesky B, May-Phillips HA, Holan GR (1993) Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng 41:826–829
  • 36. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 26:427–451
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0008-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.