PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of individual dopants in singe-electron devices - a study by KFM observation and simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
8th International Conference on Global Research and Education – Inter-Academia 2009
Języki publikacji
EN
Abstrakty
EN
Single electron devices (SEDs) are candidates to become a keystone of future electronics. They are very attractive due to low power consumption, small size or high operating speed. It is even possible to assure compatibility with present CMOS technology when natural potential fluctuations introduced by dopant atoms are used to create quantum dots (QD). However, the main problem of this approach is due to the randomness of dopant distribution which is characteristic for conventional doping techniques. This leads to scattered characteristics of the devices, which precludes from using them in the circuits. In these work we approach the problem of correlating the distribution of QD's with the device characteristics. For that, we investigate with a Kelvin probe force microscope (KFM) the surface potential of Si nanodevice channel in order to understand the potential landscape. Results reveal the features ascribable to individual dopants. These findings are supported also by simulation results.
Twórcy
autor
autor
autor
autor
autor
autor
  • Shizuoka University, Research Institute of Electronics, Johoku 3-5-1, 432-8011 Hamamatsu, Japan, maciej@ligowski.com
Bibliografia
  • [1] Kane B.E., "A Silicon Based Nuclear Spin Quantum Computer", Nature (London), vol. 393, 1998, pp. 133.
  • [2] Moraru D., Ono Y., Inokawa H., Tabe M., "Quantized electron transfer through random multiple tunnel junctions in phosphorus-doped silicon nanowires",Phys.Rev. B, vol. 76, 2007, p. 075332.
  • [3] Yokoi K., Moraru D., Ligowski M., Tabe M., "Single-Gated Single-Electron Transfer in Nonuniform Arrays of Quantum Dots", Jpn. J. Appl. Phys., vol. 48, 2009, p. 024503.
  • [4] Smith R.A., Ahmed H., "Gate controlled Coulomb bloc-kade effects in the conduction of a silicon quantum wire", J. Appl. Phys., vol. 81, 1996, p. 2699.
  • [5] Ono Y., , "Conductance modulation by individual acceptors in Si nanoscale field-effect transistors", Appl. Phys. Lett., vol. 90, 2007, p. 102106.
  • [6] Sellier H., , "Transport Spectroscopy of a Single Dopant in a Gated Silicon Nanowire", Phys. Rev. Lett., vol. 97, 2006, p. 206805.
  • [7] Averin D.V., Likharev K.K., in ,"Single charge tunneling", ed. Grabert H. and Devoret M., Plenum, New York, 1992, p. 311.
  • [8] Nonnenmacher M., et al., "Kelvin probe force microscopy", Appl. Phys. Lett., vol. 58, 1991, p. 2921.
  • [9] Ligowski M., Moraru D., Anwar M., Mizuno T., Jablonski R., Tabe M., "Observation of individual dopants in a thin silicon layer by low temperature Kelvin probe force microscope", Appl. Phys. Lett., vol. 93, no. 14, 2008, p. 142101.
  • [10] Nishizawa M., et al., "Simultaneous measurement of potential and dopant atom distributions on wet-prepared Si(111):H surfaces by scanning tunneling microscopy", Appl. Phys. Lett., vol. 90, 2007, pp. 122118.
  • [11] Goragot W., Takai M., "Measurement of Shallow Dopant Profile Using Scanning Capacitance Microscopy", Jpn. J. Appl. Phys., vol. 43, 2004, p. 3990.
  • [12] Evans G.J., Mizuta H., Ahmed H., "Modelling of Structural and Threshold Voltage Characteristics of Randomly Doped Silicon Nanowires in the Coulomb-Blockade Regime", Jpn. J. Appl. Phys., vol. 40, 2001, p. 5837.
  • [13] Zerweck U., Loppacher C., Otto T., Grafstrom S., and L. M. Eng.
  • [14] Moraru D., Ligowski M., Yokoi K., Mizuno T., Tabe M., Appl. Phys. Exp., vol. 2, 2009, pp. 071201.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0006-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.