Konferencja
8th International Conference on Global Research and Education – Inter-Academia 2009
Języki publikacji
Abstrakty
In order to measure the Seebeck coefficient of nanometer-scale thermoelectric materials, we propose a new technique in which the thermoelectric-motive force (TEMF) is evaluated by Kelvin-probe force microscopy (KFM). In this study, we measured the Seebeck coefficient of an n-type Si wafer. The surface-potential difference between the high- and low-temperature regions on the Si wafer increases with increasing temperature difference. This indicates that the TEMF can be measured by KFM. The Seebeck coefficient evaluated from the surface-potential difference is 0.71š0.08 mV/K, which is close to that obtained by the conventional method.
Słowa kluczowe
Rocznik
Tom
Strony
49--51
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
autor
autor
- Research Institute of Electronics, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8011, Japan, ikeda@rie.shizuoka.ac.jp
Bibliografia
- [1] Hicks L.D., Dresselhaus M.S., ”Effect of quantum-well structures on the thermo-electric figure of merit”, Phys. Rev. B, vol. 47, no. 19, 1993, pp. 12727-12731.
- [2] Hicks L.D., Dresselhaus M.S., ”Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B, vol. 47, no. 24, 1993, pp. 16631-16634.
- [3] Balandin A.A., Lazarenkova O.L., ”Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices”, Appl. Phys. Lett. , vol. 82, no. 3, 2003, pp. 415-417.
- [4] Simkin M.V., Mahan G.D., ”Minimum thermal conductivity of superlattices”, Phys. Rev. Lett., vol. 84, no. 5, 2000, pp. 927-930.
- [5] Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E., ”Quantum dot superlattice ther-moelectric materials and devices”, Science, vol. 297, 2002, pp. 2229-2232.
- [6] Li D., Wu Y., Kim P., Shi L., Yang P., Majumdar A., ”Thermal conductivity of indi-vidual silicon nanowires”, Appl. Phys. Lett., vol. 83, no. 14, 2003, pp. 2934-2936.
- [7] Hochbaum A.I., Chen R., Delgado R.D., Liang W., Garnett E.C., Najarian M., Majumdar A., Yang P., ”Enhanced thermoelectric performance of rough silicon nanowires”, Nature, vol. 451, 2008, pp. 163-167.
- [8] Boukai A.I., Bunimovich Y., Kheli J.T., Yu J.K., Goddard W.A. III, Heath J.R., ”Silicon nanowires as efficient thermoelectric materials”, Nature, vol. 451, 2008, pp. 168-171.
- [9] Williams C.C., Wickramasinghe H.K., ”Microscopy of chemical-potential variations on an atomic scale”,Nature, vol. 344, 1990, pp. 317-319.
- [10] Lyeo H.K., Khajetoorians A.A., Shi L., Pipe K.P., Ram R.J., Shakouri A., Shih C.K., ”Profiling the thermoelectric power of semiconductor junctions with nanometer resolution”, Science, vol. 303, 2004, pp. 816-818.
- [11] Sze S.M.,Semiconductor Devices, Physics and Technology, John Wiley & Sons, 1985, Chap. 5.
- [12] Salleh F., Asai K., Ishida A., Ikeda H., ”Seebeck coefficient of ultrathin silicon-on-insulator layers”,Appl. Phys. Express, vol. 2, 2009, pp. 071203-1-3.
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0006-0013