PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of Cellular Automata framework dedicated to digital material representation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Implementacja framework'u do automatów komórkowych dedykowanego cyfrowej reprezentacji materiałów
Języki publikacji
EN
Abstrakty
EN
Computer simulation programs based on fundamental physics laws become more and more sophisticated and accurate in description of material behaviour under deformation conditions. That contributes to the general knowledge about the microstuctural phenomena that occur during metal processing, e.g. hardening, recovery, and both dynamic and static recrystallization. Therefore there is a need to take explicitly into account microstructure features i.e. grains, grain orientations, inclusions, cracks, different phases etc. during the simulations. These microstructural features and their local interactions under loading can result in a very elevated material properties. That is a reason why many researchers are working towards creation of digital material representation (DMR), which provides detailed description of material structure. The DMR is than an input data for the multi scale simulation of large scale industrial processes as well as for the very local investigation of deformation mechanisms. Available approaches for the DMR are usually in-house codes, which are developed individually and are based on various computational methods e.g. Voronoi Tesselation, Sphere Growth, image processing, Monte Carlo or Cellular Automata. However, character of the in-house codes is a limiting factor in application in real industrial conditions, where for the sake of simplicity a user friendly automatic software is required. That is the reason why the main goal of this research is to create an easy to use, user friendly software library that can be used not only to create the DMR with interesting features represented explicitly but also can be used to study micro scale phenomena during deformation i.e. recrystalization, phase transformation, inhomogeneous flow due to inclusions distribution. Such a software combined with the macro scale analysis methods i.e. finite element (FE) method and with optimisation algorithms can be used to redesigned the material microstructure in order to obtain specific material properties after manufacturing stage. CA Framework is created by using object oriented design, which facilitates its further application in external software. It is composed of several classes responsible for representation of space, automaton, cells, configuration and internal variables. Main assumptions regarding the CA Framework and its functionality will be presented and discussed in the paper. Examples of wide range of generated microstructures for one and two phase materials as well as microstructures with different shapes and size of inclusions will be shown as well. Finally obtained digital microstructures will be used as input data for the FE simulations to investigate e.g. influence of microstructural features on final material properties.
PL
Niniejsza praca przedstawia projekt oraz implementację framework'u programistycznego dedykowanego do wspomagania rozwoju algorytmów opartych o technologie automatów komórkowych. Główny cel pracy skupia się na optymalizacji architektury framework'u tak, aby osiągnąć jednocześnie wysoką efektywność obliczeniową oraz elastyczność w możliwościj projektowania nowych algorytmów. Obecnie różnego algorytmy oparte o automaty komórkowe mogą być definiowane na bazie zaproponowanego framework'u, począwszy od prostej gry w życie, a skończywszy na skomplikowanych algorytmach zarodkowania i rozwoju mikrostruktur materiałowych. Framework połączony jest ze specjalnym modułem wizualizacji otrzymanych wyników zaimplementowanym za pomocą technologii OpenGL. Rezultaty uzyskane dzięki połączeniu modułów zostały również przedstawione i omówione w niniejszym artykule.
Wydawca
Rocznik
Strony
283--288
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
autor
autor
Bibliografia
  • 1.    Ayyar, A., Chawla, N., Microstructure-based modeling of crack growth in particle reinforced composites, Composites Science and Technology, 66, 2006, 1980-1994.
  • 2.    Bernacki, M., Chastel, Y., Digonnet, H., Resk, H., Coupez, T., Loge, R.E., Development of numerical tools for the multi scale modelling of recrystallisation in metals, based on adigital materiał framework, Comp. Meth. Mater. Sci., 7, 2007, 142-149.
  • 3.    Cybułka, G., Jamrozik, P., Wejrzanowski, T., Rauch, L., Madej, L., Digital representation of microstructure, Proc. CMS Conf., Kraków, 2007, 379-384.
  • 4.    Dawson, P. R., Miller, M. P., The digital material - an environment for collaborative materiał design, project poster. Available at: http://anisotropy.mae.cornell.edu/downloads/dplab/.
  • 5.    Estrin, Y., Dislocation Density related constitutive modeling, in: unified constitutive laws of plastic deformation, eds. Krausz, A. S., Krausz, K., Academic Press, 1996.
  • 6.    Grosman, F., Application of the flow stress function in programmes for computer simulation of plastic working processes, J. Mat. Proc. Technol., 64, 1997, 169-180.
  • 7.    Hatzi, O., Thomas, S., Dalakas, V., Nikolaidou, M., Anagnostopoulos, D., A cellular automata framework for studying expandable traffic flow models, Proc. of the 2007 summer computer simulation conference, 2007 (CD).
  • 8.    Karafyllidis, L, Thanailakis, A., A model for predicting forest fire spreading using cellular automata, Ecological Modelling, 99, 1997,87-97.
  • 9.    Madej, L., Gawad, J., Hodgson, P.D., Pietrzyk, M., Contribution to digital representation of materials subjected to thermo-mechanical processing, Proc. MS&T, Detroit, 2007, 403-414.
  • 10.   Madej, L., Mrozek, A., Kuś, W., Burczyński, T., Pietrzyk, M., Concurrent and upscaling methods in multi scale modelling - case studies, Comp. Meth. Mater. Sci., 8, 2008, 1-10.
  • 11.   Melchior,  M.A.,  Delannay,  L.,  A  texture  discretization technique adapted to polycrystalline aggregates with non-uniform grain size, Comp. Mater. Sci., 37, 2006, 557-564.
  • 12. Pietrzyk, M., Finite element based model of structure development in the hot rolling process, Steel Research, 61, 1990, 603-607.
  • 13. Rauch, L., Madej, L., Pietrzyk, M., Hybrid system for modelling and optimization of production chain in metal forming, J. of Machine Eng., 8, 2008, 14-22.
  • 14. Rauch, L., Madej, L., Deformation of the dual phase material on the basis of digital representation of microstructure, Steel Res. Int. 79, Special Edition Metal Forming Conf., 2, 2008, 247-254.
  • 15. Romanova, V., Balokhonov, R., Makarov, P., Schmauder, S., Soppa, E., Simulation of elastoplastic behaviour of an artificial 3D-structure under dynamic loading, Comput. Mater. Sci. 28, 2003, 518-528.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0002-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.