PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new method for the evaluation of the yield criteria accuracy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nowa metoda oszacowania dokładności kryterium plastyczności
Języki publikacji
EN
Abstrakty
EN
A fair description of the plastic anisotropy of thin sheet metals plays an important role in forming operations, once material flow, springback as well as wrinkling and limit strains are significantly affected by the yield criterion used in the analysis. Such a criterion is a relationship which identifies the stress states capable to produce the transition of the material from the elastic domain to the plastic one. This relationship can be interpreted as being the equation of a geometrical entity in the stress space (the so-called yield surface). In the analytical relationships that describe the yield criteria, the components of stress tensor are accompanied by material parameters. The values of the parameters are determined using experimental data. During the last years, new yield functions were introduced in order to improve the fitting of the experimental results, especially for aluminium and magnesium alloys [1]. The CERTETA team has developed several anisotropic yield criteria [2],[3]. The paper presents a test used to estimate the predictive accuracy of a few yield criteria for anisotropic materials. The study is focused on the yield criteria developed at the CERTETA research center. The performances of the models have been tested on two sorts of sheet metals widely used in the industry: steel SPCEN and an aluminium alloy AA3103-0. The results (predicted yield locus, distributions of the uniaxial yield stress, anisotropy coefficients) show the influence of the number of material parameters included in the identification procedure on the accuracy of the criteria.
PL
Artykuł przedstawia test wykonany w celu oszacowania przewidywanej dokładności kilku kryteriów plastyczności dla materiałów anizotropowych. Działanie modeli zostało przetestowane na przykładzie blachy cienkiej ze stopu aluminium AA3103-0 szeroko stosowanej w przemyśle. Wyniki (oszacowanie miejsca płynięcia materiału, jednoosiowy rozkład granicy plastyczności, współczynniki anizotropii) pokazały wpływ wielu parametrów materiału uwzględnionych w procedurze identyfikacji na dokładność analizowanych kryteriów
Słowa kluczowe
Wydawca
Rocznik
Strony
148--152
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
autor
  • Research Centre in Sheet Metal Forming Technologies-CERTETA Technical University of Cluj-Napoca, c. Daicoviciu 15, 400020 Cluj-Napoca, Romania, banabic@tcm.utcluj.ro
Bibliografia
  • 1. Mattiasson, K., Continuum Mechanics Principles for Large Deformation in Soi id and Structural Mechanics, Publication 81:6-Departement of Structural Mechanics, Clialmers University of Technology-Goteborg, 1981.
  • 2. Hill, R., The Mathematical Theory of Plasticity, Oxford, Clarendon Press, 1950.
  • 3. Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, IM-; Lege, DJ., Pourboghrat, F., Choi, S.-H., Chu, F., Plane stress yield function for aluminium alloy sheets     part l: theory, Int. J. of Plasticity, 19,2003, 1297-1319.
  • 4. Banabic, D., Comsa, D.S., Balan, T., A new yield criterion for orthotropic sheet metals under pianę stress conditions, Proc. 7th TPR 2000 Conf. on Cold Metal Forming, ed., Banabic, D., Printek Publishing House, Cluj Napocą, 2000, 217-224.
  • 5. Banabic, D., Kuwabara, T., Balan, T., Comsa, D.S., Julean, D., Non -ąuadratic yield criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mechanical Sciences, 45, 2003, 797-811.
  • 6. Banabic, D., Aretz, H., Comsa, D.S., Paraianu, L., An improved analytical description of orthotropy in metallic sheets, International Journal of Plasticity, 21, 2005, 493-512.
  • 7. Comsa, D.S., Banabic, D., Plane-stress yield criterion for highly-anisotropic   sheet   metals,   Numisheet   2008,   ed., Hora, P., Interlaken, 2008, 43-48.
  • 8. Cazacu, O., Barlat, F., Generalization of Drucker's yield criterion to orthotropy, Mathematics and Mechanics of Solids, 6, 2001, 613-630.
  • 9. Aretz, H., Barlat, F., General orthotropic yield functions based on linear stress deviator transformations, Materials Processing and Design. Modeling, Simulation and Applications, ed, Ghosh, A.K., 2004, 147-151.
  • 10. Leacock, A. G., A mathematical description of orthotropy in sheet metals, Journal of the Mechanics and Physics of Solids, 54, 2006, 425-444.
  • 11. Barlat, F., Cazacu, O., Zyczkowski, M., Banabic, D., Yoon, J.-W., Yield surface plasticity and anisotropy, Continuum Scale Simulation of Engineering Materials Fundamentals-Microstructures-Process   Applications,   eds,   Raabe,   D., Chen, L.Q., Barlat, F., Roters, F., Wiley-VCH, Weinheim, 2004,145-185.
  • 12. Banabic, D., Tekkaya, E.A., Forming Simulation, Virtual Fabrication of Aluminum Alloys: Microstructural Modeling in Industrial Aluminum Production, ed., Hirsch, J., Wiley-VCH, Weinheim, 2006, 275-303.
  • 13. Banabic, D., Barlat, F., Cazacu, O., Kuwabara, T., Anisotropy  and  formability,  Advances  in  Material  Forming-FSAFORM   10 Years on, eds, Chinesta, F., Cueto, E., Springer, Heidelberg-Berlin, 2007, 143-173.
  • 14. Barlat, F., Lian, J., Plastic Behavior and Stretchability of Sheet Metals. Part.I: A Yield Function for Orthotropic Sheet under Plane Stress Conditions, Int. J. of Plasticity, 5, 1989,51-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0002-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.