Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of high-strength steel sheets to reduce car weight is drawing much attention from the viewpoint of environmental preservation. However, high-strength steel sheets are much inferior to ordinary steel sheets in formability. In order to find the forming method and conditions suitable for high-strength steel sheets, the forming limit in sheet forming processes has to be correctly predicted. The authors have recently proposed an approach to predict the forming limit by introducing criteria for ductile fracture into the finite element simulation of sheet metal forming processes. In the criteria the occurrence of ductile fracture is estimated by the macroscopic stress and strain during forming which are calculated by the finite element simulation. In the previous studies, the possibility of the application of some criteria for ductile fracture to the high-strength steel sheets was examined. The forming limits of a few types of high-strength steel sheets under various strain paths from balanced biaxial to uniaxial tension were examined by the Marciniak-type in-plane biaxial stretching test, and they were compared with those derived from the ductile fracture criteria. As a result, it turned out that the fracture strains derived from the criterion by Cockcroft and Latham gave the best fit to the experimental results. Then, the forming limit predictions were successfully carried out for 3-dimensional deep-drawing and stretching processes by the finite element simulation combined with the ductile fracture criterion. Stretch flanging is also one of the fundamental press forming processes like deep-drawing and stretching, but is different from others in the point that fracture occurs at the edge of the sheets. The sheet edge suffers influences of the pre-forming, i.e. blanking. In this study, stretch flanging tests of a 780 MPa grade high-strength steel sheet are carried out for various blank geometries, and they are analysed by the finite element method combined with the ductile fracture criterion. The dynamic explicit finite element program LS-DYNA ver.970 with thin shell is used. The comparison with the experimental results demonstrates the possibility of forming limit prediction via the present approach in which we take the work-hardening and damage in the blanking process into consideration.
Prowadzone wcześniej przez autorów badania miały na celu określenie odkształceń granicznych w kilku typach stali o podwyższonej granicy plastyczności podczas różnych schematów obciążenia, np. dla stanu dwuosiowego lub stanu jednoosiowego. Wyniki tych badań porównano z rezultatami uzyskanymi w drodze analizy teoretycznej bazującej na kryteriach plastycznego pękania. Porównanie to wykazało, iż graniczne wartości odkształcenia określone w oparciu o kryterium Cockcrofta i Lathama są najbliższe wynikom badań laboratoryjnych. W niniejszej pracy analogiczną analizę zastosowano do symulacji próby tłoczności. Przeprowadzona analiza numeryczna wykorzystuje pakiet komercyjny metody elementów skończonych LS-DYNA w wersji 971. W pracy wykorzystano elementy skończone typu powłokowego. Wyniki symulacji wykazały dużą zgodność uzyskanych wartości odkształcalności granicznej z wynikami badań laboratoryjnych. Taka zgodność była możliwa poprzez uwzględnienie w modelu numerycznym procesu umocnienia oraz pękania występującego na brzegu wsadu.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
137--142
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
autor
autor
autor
autor
- Department of Energy Science and Technology, Kyoto University, 606-8501 Kyoto, Japan, takuda@energy.kyoto-u.ac.jp
Bibliografia
- 1. Takuda, H., Mori, K., Fujimoto, H., Hatta, N., 1996, Prediction of Forming Limit in Deep Drawing of Fe/Al Laminated Composite Sheets Using Ductile Fracture Criterion, J. Mater. Process. Tech., 60, 291-296.
- 2. Takuda, H., Mori, K., Fujimoto, H., Hatta, N., 1999a, Prediction of Forming Limit in Bore-Expanding of Sheet Metals Using Ductile Fracture Criterion, J. Mater. Process. Tech., 92-93, 433-438.
- 3. Takuda, H., Mori, K., Hatta, N., 1999b, The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals, J. Mater. Process. Tech., 95, 116-121.
- 4. Takuda, H., Mori, K., Takakura, N., Yamaguchi, K., 2000, Finite Element Analysis of Limit Strains in Biaxial Stretching of Sheet Metals Allowing for Ductile Fracture, Int. J. Mech. Sci., 42, 785-798.
- 5. Takuda, H., Kanie, T., Isogai, E., Yoshida, T., 2004, Application of Ductile Fracture Criteria to Prediction of Forming Limit of High-Strength Steel Sheets, Steel Grips, 2,439-443.
- 6. Takuda, H., Hama, T., Yoshida, T., Nitta, J., 2008, Forming Limit Prediction of High-Strength Steel Sheets in Stretch Forming, Steel Res. Intern., 79,Metal Forming 2008, l, 19-23.
- 7. Marciniak, Z., Kuczynski, K., 1967, Limit Strain in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 9, 609-620.
- 8. Cockcroft, M.G., Latham, D.J., 1968, Ductility and the Workability of Metals, J. Inst. Metals, 96, 33-39.
- 9. Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, 318-321.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0002-0021