PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of genetic algorithm for optimization the safety system of the nuclear reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to present an approach to optimization in which every target is considered as a separate objective to be optimized. Multi-objective optimization is a powerful tool for resolving conflicting objectives in engineering design and numerous other fields. One approach to solve multi-objective optimization problems is the non-dominated sorting genetic algorithm (NSGA). Genetic algorithm (GA) was applied in regarding the choice of the time intervals for the periodic testing of the components of the chimney water injection system (CWIS) of the 22 MW open pool multipurpose reactor (MPR), ETRR-2, at the Egyptian Atomic Energy Authority, has been used as a case study.
Czasopismo
Rocznik
Strony
51--56
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Faculty of Science, Mathematics Department, Zagazic University, Egypt Tel.: +20 114 641995, Fax: +20 282 7236, zakariawesam@yahoo.com
Bibliografia
  • 1. Abd el-Razek ID (2000) The development of the MPR project. In: Proc of the 5th Arab Conf in the Peaceful Uses of Atomic Energy, November 2000, Lebanon, I:41–66
  • 2. Alexandre A, de Vasconcelos A (2002) Multi-objective algorithms applied to solve optimization problems. IEEE T Magn 38:152–161
  • 3. Andersson J, Pohl J, Krus P (1998) Design of objective functions for optimization of multi-domain systems. ASME Annual Winter Meeting, June 1998, FPST Division, Anaheim, California, USA
  • 4. Cantoni M, Marseguerra M, Zio E (2002) Genetic algorithms and Monte Carlo simulation for optimal plant design. Reliab Eng Sys Safety 68:29–38
  • 5. Fonesca C, Fleming P (1993) Proc of the 5th Int Conf on Genetic Algorithms, 4:416–423
  • 6. Furdu I, Patrut B (2006) Genetic algorithm for ordered decision diagrams optimization. In: Proc of the 7th Joint Conf on Mathematics and Computer Science, July 3–6, 2008, Cluj, Romania, pp 437–444
  • 7. Habib A, Ashry H, Shokr A (2005) Improving reactor safety systems using component redundancy allocation technique. Nukleonika 50;3:105–112
  • 8. Holland JH (1975) Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor, MI
  • 9. INVAP-AEA (1999) Final safety analysis report of ETRR-2. Document #0767-5325-3IBLI-001-1A
  • 10. Marseguerra M, Zio E (2002) Optimizing maintenance and repair policies via a combination of genetic algorithms and Monte Carlo simulation. Reliab Eng Sys Safety 35:69–83
  • 11. Martorell S, Carlos S, Sanchez A, Serradell V (2000) Constrained optimization of test intervals using a steady-state genetic algorithm. Reliab Eng Sys Safety 23:215–232
  • 12. Parks GT (1994) Multi-objective pressurized water reactor reload core design using genetic algorithm search. Nucl Sci Eng 24:178–187
  • 13. Shaaban N, Takahashi H (2006) An overview of genetic algorithm. J Nucl Sci Technol 43:816–818
  • 14. Srinivas N, Deb K (2004) Multi-objective optimization using non-dominated sorting in genetic algorithms. J Evolutionary Computation 2;3:221–248
  • 15. Yang JE, Hwang MJ, Sung TY, Jin Y (1999) Application of genetic algorithm for reliability allocation in nuclear power plants. Reliab Eng Sys Safety 12:229–238
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0025-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.