PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charge transfer in DNA and repair of oxidative damage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of a biological role of an unusual function of DNA sequences is discussed, namely, signaling by charge transfer within chromatin. Although a general conclusion on its biological significance is premature, the idea of charge transfer accompanying repair of some types of oxidative DNA damage is based on sound experimental data. Both physical and chemical experiments reviewed here provided results indicating that DNA duplex under certain conditions (among them – hydration) – can behave as narrow band gap semiconductor. With the use of model molecules it was shown that charge transfer most probably occurs by hopping between guanine residues and tunneling through thymine-adenine (TA) base pairs. Charge transfer is nucleotide sequence and distance dependent. Furthermore, the pi-stacked base pairs must be perfectly matched to mediate charge transfer and in a damaged double helix this condition is not fulfilled. Hence, the possibility that charge transfer takes place in oxidatively damaged DNA after UV or X-irradiation and it becomes interrupted by mismatched base pairs, thus signaling the mismatch or strand break to the repair machinery. Function of base damage repair enzymes which contain [4Fe-4S] clusters is discussed in this context.
Czasopismo
Rocznik
Strony
11--16
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
  • Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 5041334, Fax: +48 22 5041341, mesyl@ichtj.waw.pl
Bibliografia
  • 1. Abbasi AA, Paparidis Z, Malik S et al. (2007) Human GLI3 intragenic conserved non-coding sequences are tissue-specific enhancers. PLoS ONE 2:e366 (doi:10.1371/journal.pone.0000366)
  • 2. Allende ML, Manzanares M, Tena JJ, Feijóo CG, Gómez-Skarmeta JL (2006) Cracking the genome’s second code: enhancer detection by combined phylogenetic footprinting and transgenic fish and frog embryos. Methods 39:212–219
  • 3. Arkin MR, Stemp ED, Pulver SC, Barton JK (1997) Long-range oxidation of guanine by Ru(III) in duplex DNA. Chem Biol 4:389–400
  • 4. Augustyn KE, Merino EJ, Barton JK (2007) A role for DNA-mediated charge transport in regulating p53: Oxidation of the DNA-bound protein from a distance. Proc Natl Acad Sci USA 104:18907–18912
  • 5. Berashevich J, Chakraborty T (2008) Water induced weakly bound electrons in DNA. J Chem Phys 128:235101(6p)
  • 6. Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Long-range charge hopping in DNA. Proc Natl Acad Sci USA 96:11713–11716
  • 7. Boal AK, Yavin E, Barton JK (2007) DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport? J Inorg Biochem 101:1913–1917
  • 8. Boon EM, Barton JK (2002) Charge transport in DNA.Curr Opin Struct Biol 12:320–329
  • 9. Byrdin M, Villette S, Eker AP, Brettel K (2007) Observation of an intermediate tryptophanyl radical in W306F mutant DNA photolyase from Escherichia coli supports electron hopping along the triple tryptophan chain.Biochemistry 46:10072–10077
  • 10. Dandliker PJ, Holmlin RE, Barton JK (1997) Oxidative thymine dimer repair in the DNA helix. Science 275:1465–1468
  • 11. Dawkins R (1976) The selfish gene. Oxford University Press Inc., New York
  • 12. DeRosa MC, Sancar A, Barton JK (2005) Electrically monitoring DNA repair by photolyase. Proc Natl Acad Sci USA 102:10788–10792
  • 13. Eley DD, Spivey DI (1962) Semiconductivity of organic substances. IX. Nuclei acids in the dry state. Trans Faraday Soc 58:411–415
  • 14. Elson E (2007) Developmental control in animals and a biological role for DNA charge transfer. Prog Biophys Mol Biol 95:1–15
  • 15. Giese B (2002) Long-distance electron transfer through DNA. Annu Rev Biochem 71:51–70
  • 16. Giese B (2006) Electron transfer through DNA and peptides. Bioorg Med Chem 14:6139–6143
  • 17. Gorodetsky AA, Boal AK, Barton JK (2006) Direct electrochemistry of endonuclease III in the presence and absence of DNA. J Am Chem Soc 128:12082–12083
  • 18. Hall DB, Holmlin RE, Barton JK (1996) Oxidative DNA damage through long-range electron transfer. Nature 382:731–735
  • 19. Hall DB, Kelley SO, Barton JK (1998) Long-range and short-range oxidative damage to DNA: photoinduced damage to guanines in ethidium-DNA assemblies. Biochemistry 37:15933–15940
  • 20. Kao YT, Saxena C, Wang L, Sancar A, Zhong D (2007) Femtochemistry in enzyme catalysis: DNA photolyase. Cell Biochem Biophys 48:32–44
  • 21. Kelley SO, Barton JK (1998) DNA-mediated electron transfer from a modified base to ethidium: pi-stacking as modulator of reactivity. Chem Biol 5:413–425
  • 22. Kelley SO, Barton JK (1999) Electron transfer between bases in double helical DNA. Science 283:375–381
  • 23. Kelley SO, Holmlin RE, Stemp EDA, Barton JK (1997) Photoinduced electron transfer in ethidium-modified DNA duplexes: dependence on distance and base stacking. J Am Chem Soc 119:9861–9870
  • 24. Ly D, Sanii L, Schuster GB (1999) Mechanism of charge transfer in DNA: internally linked anthraquinone conjugates support phonone-assisted polaron hopping. J Am Chem Soc 121:9400–9410
  • 25. McEwen GK, Woolfe A, Goode D, Vavouri T, Callaway H, Elgar G (2006) Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. Genome Res 16:451–465
  • 26. Mees A, Klar T, Gnau P et al. (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789–1793
  • 27. Merino EJ, Boal AK, Barton JK (2008) Biological contexts for DNA charge transport chemistry. Curr Opin Chem Biol 12:229–237
  • 28. Murphy CJ, Arkin MR, Jenkins Y et al. (1993) Long-range photoinduced electron transfer through a DNA helix. Science 262:1025–1029
  • 29. Nakaya HI, Amaral PP, Louro R et al. (2007) Genome mapping and expression analyses of human intronic non-coding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription.Genome Biol 8:R43
  • 30. Núñez ME, Hall DB, Barton JK (1999) Long-range oxidative damage to DNA: effects of distance and sequence. Chem Biol 6;2:85–97
  • 31. Núñez ME, Holmquist GP, Barton JK (2001) Evidence for DNA charge transport in the nucleus. Biochemistry 40:12465–12471
  • 32. Núñez ME, Noyes KT, Barton JK (2002) Oxidative charge transport through DNA in nucleosome core particles. Chem Biol 9:403–415
  • 33. Okahata Y, Kobayashi T, Tanaka K, Shimomura M (1998) Anisotropic electric conductivity in an aligned DNA cast film. J Am Chem Soc 120:6165–6166
  • 34. O’Neill MA, Barton JK (2004) DNA charge transport: conformationally gated hopping through stacked domains. J Am Chem Soc 126:11471–11483
  • 35. Paparidis Z, Abbasi AA, Malik S et al. (2007) Ultraconserved non-coding sequence element controls a subset of spatiotemporal GLI3 expression. Dev Growth Differ 49:543–553
  • 36. Rajski SR, Barton JK (2001) How different DNA-binding proteins affect long-range oxidative damage to DNA. Biochemistry 40:5556–5564
  • 37. Rajski SR, Jackson BA, Barton JK (2000) DNA repair: models for damage and mismatch recognition. Mutat Res 447:49–72
  • 38. Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T (2005) Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132:797–803
  • 39. Szent-Gyorgyi A (1960) Introduction to submolecular biology. Academic Press, New York
  • 40. Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G (2007) Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol 8:R15
  • 41. Wagenknecht HA, Rajski SR, Pascaly M, Stemp ED, Barton JK (2001) Direct observation of radical intermediates in protein-dependent DNA charge transport. J Am Chem Soc 123:4400–4407
  • 42. Weber S (2005) Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim Biophys Acta 1707:1–23
  • 43. Williams TT, Odom DT, Barton JK (2000) Variations in DNA charge transport with nucleotide composition and sequence. J Am Chem Soc 122:9048–9049
  • 44. Woolfe A, Goodson M, Goode DK et al. (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3;1:e7 (doi:10.1371/journal.pbio.0030007)
  • 45. Yasui A, Eker APM, Yasuhira S et al. (1994) A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J 13:6143–6151
  • 46. Yavin E, Boal AK, Stemp ED et al. (2005) Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical. Proc Natl Acad Sci USA 102:3546–3551
  • 47. Yavin E, Stemp ED, O’Shea VL, David SS, Barton JK (2006) Electron trap for DNA-bound repair enzymes: a strategy for DNA-mediated signaling. Proc Natl Acad Sci USA 103:3610–3614
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0025-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.