Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A brief analysis of the He-O chemical bond, present in cationic (HeO+ź) and a few hypothetical anionic species (XHeO-, X = F, Cl), is performed at various levels of theory. We are also able to propose two candidates for the first metastable neutral molecule which contains helium chemically bound to oxygen: (HeO)(CsF) and (HeO)(NMe4F).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
87--122
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
autor
- The Faculty of Chemistry, The University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland, wg22@cornell.edu
Bibliografia
- 1. (a) Krems R.V., Kłos J., Rode M.F., Szczęśniak M.M., Chałasiński G. and Dalgarno A., Phys, Rev Lett.,94, 013202 (2005); (b) Krems R.Y., Buchachenko A.A., Szczęśniak M.M., Kłos J. and Chałasiński G.,J. Chem. Phys., 116, 1457 (2002).
- 2. (a) Cybulski S.M., Burcl R., Szczęśniak M.M. and Chałasiński G., J. Chem. Phys., 104, 7997 (1996);(b) Cybulski S.M., Kendall R.A., Chałasiński G., Severson M.W. and Szczęśniak M.M., J. Chem.Phys., 106, 7731 (1997); (c) Buchachenko A.A., Jakowski J., Chałasiński G., Szczęśniak M.M and Cybulski S.M., J. Chem. Phys., 112, 5852 (2000); (d) Buchachenko A.A., Szczęśmak M. and Chałasiński G., Chem. Phys. Lett., 347, 415 (2001); (e) Krems R.V., Buchachenko A.A., Szczęśniak M.M., Kłos J. and Chałasiński G., J. Chem. Phys., 116, 1457 (2002); (f) Buchachenko A.A., SzczęśniakM.M., Kłos J. and Chałasiński G., J. Chem. Phys., 117,2629 (2002); (g) Jakowski J., Chałasiński G., Gallegos J., Severson M.W. and Szczęśniak M.M., J. Chem. Phys., 118, 2748 (2003); (h) Jakowski J., Chałasiński G., Cybulski S.M. and Szczęśniak M.M., J. Chem. Phys., 118, 2731 (2003).
- 3. (a) Chałasiński G. and Simons J., Chem. Phys. Lett., 148, 289 (1988); (b) Chałasiński G. and Gutowski M., Chem. Rev., 88, 943 (1988); (c) Chałasiński G., Szczęśniak M.M. and Kukawska-Tarnawska B., J. Chem. Phys., 94,6677 (1991); (d) Chałasiński G., Szczęśniak M.M. and Kendall R.A., J. Chem. Phys., 101, 8860 (1994); (e) Cybulski S.M., Szczęśniak M.M. and Chałasiński G., J. Chem. Phys., 101,10708 (1994); (f) Chałasiński G., Kłos J., Cybulski S.M. and Szczęśniak M.M., Coll. Czech. Chem. Commun., 63, 1473 (1998); (g) Kłos J., Chałasiński G., Berry M.T., Kendall R.A., Burel R., Szczęśniak M.M. and Cybulski S.M., J. Chem. Phys., 112, 4952 (2000); (h) Kłos J., Rode M.F., Rode J.E., Chałasiński G. and Szczęśniak M.M., Ew. J. Phys. D, 31, 429 (2004); (i) Jakowski J., Chałasiński G., Szczęśniak M.M. and Cybulski S.M., Coll. Czech. Chem. Commun., 68, 587 (2003).
- 4. Lewis G.N., J. Am. Chem. Soc., 38, 762 (1916).
- 5. Unusual bonding to 'noble gases' has recently been reviewed: (a) Grochala W., Chem. Soc. Rev, 36, 1632 (2007). For older reviews see: (b) Frenking G. and Cremer D., Noble Gas andHigh Temperature Chemistry ('Structure and Bonding' series), Springer Berlin (1990) p. 17; (c) Selig H. and Holloway J.H., in: Inorganic Chemistry ('Topics in Current Chemistry' series), Springer Berlin (1984) p. 33.
- 6. www.webelements.com , accessed Mar 27 (2008).
- 7. (a) Beach J.Y., J. Chem. Phys., 4, 353 (1936). In the early days of quantum mechanics, Beach correctly predicted that the dissociation energy of HHe+ is close to 2 eV.
- 8. Petrov A.N. and Panin A.I., Opt. Spectrosc., 90, 367 (2001).
- 9. Harland P.W., Maclagan R.G.A.R. and Simpson R.W., Faraday Trans. II, 84, 1847 (1988).
- 10. (a) Pauling L., J. Chem. Phys., l, 56 (1933); (b) Weinbaum S., J. Chem. Phys., 3, 547 (1935). He+is even more strongly bound than HHe+.
- 11. Connections of He with singly or multiply charged cations are often called 'helides'. See for example:(a) Hotokka M., Kindstedt T., Pyykkó P. and Roos B.O., Mol Phys., 52, 23 (1984); (b) Jemmis E.D.,Wong M.W., Burgi H.B. and Radom L., J. Molec. Struct. (Theochem), 93, 385 (1992); (c) Hughes J.M. and von Nagy-Felsobuki E.I., Eur. Phys. J. D, 6, 185 (1999). Reader is also referred to nice review on chemistry of helium: (d) Grandinetti F., Int. J. Mass Spectr., 237, 243 (2004).
- 12. (a) Seppelt K., Z. Anorg. Allg. Chem., 629, 2427 (2003); (b) Hwang I.C., Seidel S. and Seppelt K., Angew. Chem. Int. Ed. Engl., 42, 4392 (2003).
- 13. Seidel S. and Seppelt K., Science, 290, 117 (2000).
- 14. He 2+ is obviously a light congener of Xe2+ ; the latter is known from the solid state: (a) Drews T. and Seppelt K., Angew. Chem. Int. Ed. Engl, 36, 273 (1997). Higher cationic oligomers have also been isolated: (b) Seidel S., Seppelt K., van Wullen C. and Sun X.Y., Angew. Chem. Int. Ed. Engl., 46,6717(2007).
- 15. Khriachtchev L., Pettersson M., Runeberg N., Lundell J. and Rasanen M., Nature, 406, 874 (2000).
- 16. Grosse A.V., Kirshenbaum A.D., Streng A.G. and Streng L.V., Science, 139, 1047 (1963).
- 17. Bartlett N., Proc. Chem. Soc. London, 218 (1962).
- 18. Wong N.W., J. Am. Chem. Soc., 122, 6289 (2000).
- 19. Lundell J., Chaban G.M. and Gerber R.B., Chem. Phys. Lett., 331, 308 (2000).
- 20. Chaban G.M., Lundell J. and Gerber R.B., J. Chem. Phys., 115, 7341 (2001).
- 21. Grochala W., Feng J., Hoffinann R. and Ashcroft N. W., Angew. Chem. Int. Ed. Engl., 46,3620 (2007).
- 22. Bihary Z., Chaban G.M. and Gerber R.B., J. Chem. Phys., 116, 5521 (2002).
- 23. (a) Allen L.C., Erdahl R.M. and Whitten J.L., J. Am. Chem. Soc., 87, 3769 (1965). Compare: (b) Lourderaj U. and Sathyamurthy N., Chem. Phys., 308, 277 (2005).
- 24. Žemva B., Lutar K., Jesih A., Casteel W.J., Wilkinson A.P., Cox D.E., Von Dreele B.R., Borrmann H. and Bartlett N., J. Am. Chem. Soc., 113, 4192 (1991).
- 25. Hoppe R., Z. Anorg. Allg. Chem., 292, 28 (1957).
- 26. (a) Knox K. and Ginsberg A.P., Inorg. Chem., 3, 555 (1964); (b) Abrahams C., Ginsberg A.P. and Knox K., Inorg. Chem., 3, 558 (1964).
- 27. See for example: Niewa R., Zherebtsoy D.A. and Hohn P., Z. Krist. New Cryst. Str., 218, 163 (2003) and references therein.
- 28. Pyykkö P., Chem. Eur. J., 6, 2145 (2000).
- 29. (a) Li T.-H., Mou C.-H., Chen H.-R. and Hu W.-R, J. Am. Chem. Soc., 127, 9241 (2005); (b) Liu Y.-L.,Chang Y.-H., Li T.-H., Chen H.-R. and Hu W.-R, Chem. Phys. Lett., 439, 14 (2007).
- 30. Antoniotti R, Borocci S., Bronzolino N., Cecchi R and Grandinetti R, Chem. Phys. Lett., 111,10144(2007).
- 31. Borocci S., Bronzolino N. and Grandinetti F., Chem. Phys. Lett., 458, 48 (2008).
- 32. Lundell J. and Grochala W., manuscript in preparation (2008). The results were obtained in Apr 2007.
- 33. The results were obtained in Feb 2008.
- 34. We notice that at least three neutral systems containing He have been observed and/or proposed up to now: OBeHe, SBeHe and H3BOBeHe. However, in all these systems He serves as a hard Lewis base to-wards a rather naked metal cation, Be2+, and the nature of this donor/acceptor bond in these species is very different from those which are discussed in this work (triplet state is not limiting their stability).Cf (a) Koch W, Collins J.R. and Frenking G., Chem. Phys. Lett., 132, 330 (1986); (b) Borocci S., Bronzolino N. and Grandinetti F., Chem. Phys. Lett., 384,25 (2004); (c) Borocci S., Bronzolino N. and Grandinetti R, Chem. Phys. Lett., 406, 179 (2005). The largest predicted Edis is 0.26 eV.
- 35. These results were first presented during ICM User Session, Mar 27 2008, Warsaw Poland.
- 36. See the Gaussian 03 tutorial.
- 37. Jǿrgensen C.K., "Inorganic Complexes," Academic Press Inc., New York, N. Y, 1963, p. 33.
- 38. Allen L.C., Lesk A.M. and Erdahl R.M., J. Am. Chem. Soc., 88, 615 (1966).
- 39. Recollect that HF is a classical case, where the inclusion of electronic correlation is indispensable for correct prediction of its dissociation energy. All molecules which contain the HeO moiety show a similar feature.
- 40. Johnson M.W, Sandor E. and Arzi E., Acta Cryst. B, 31, 1998 (1975).
- 41. Bulski M. and Chałasiński G., Chem. Phys. Lett., 128, 25 (1986).
- 42. See for example: (a) Christe K.O., Wilson W. W, Wilson R.D., Bau R. and Feng J.A., J. Am. Chem. Soc., 112, 7619 (1990); (b) Sun H.R. and Di Magno S.G., J. Am. Chem. Soc., 127, 2050 (2005), and related literature on new sources of 'naked' fluoride anions.
- 43. See: Berski S., Lundell J., Latajka Z. and Leszczyński J., J. Phys. Chem. A, 102,10768 (1998), and references therein.
- 44. Hypothetical species related to [HeO.. .NHtF] are of importance since they offer a theoretical possibility of blocking the molecule's most important dissociation channel (via the F...He...O bending mode). This is because the F~ anion is no longer 'naked' in these molecules but has one proton firmly attached to it. In consequence, insertion of O into the H-F bond should not be easy (with respect to formation of the 'naked' OF- anion as in the case of [F~...HeO]) and the kinetics of decomposition of [HeO.. .NRiFl-like species is thought to be slowed down. Deuteration is another common trick which is worth considering.
- 45. Shimizu K., Kimura T., Furomoto S., Takeda K., Kontani K., Onuki Y. and Amaya K., Nature, 412, 316(2001).
- 46. Liebman J.F. and Allen L.C., J. Am. Chem. Soc., 92, 3539 (1970).
- 47. For a noble gas-solvated proton the trend is reversed (NeH+ 2.22 eV, HeH+* 2.04 eV) and it follows Lewis basicity of noble gases which is reflected in their valence orbital energies.
- 48. Górski A., Pol. J. Chem., 79, 1435 (2005).
- 49. Bent H., New Ideas in Chemistry from Fresh Energy for the Periodic Law, Author House, Bloomington, USA, 2006.
- 50. Scerri E.R., The Periodic Tobic: Its Story and Its Significance, Oxford University Press, Oxford, UK, 2007.
- 51. It has been claimed that all Ng2 molecules (Ng = He.. .Xe) except He2 and Ne2 exhibit chemical bonding if embedded inside the C60 fullerene: Krapp A. and Frenking G., Chem. Eur. J., 13, 8256 (2007).
- 52. Cioslowski J., Phys. Rev. Lett., 62, 1469 (1989).
- 53. Grochala W. and Hoffinann R., Angew. Chem. Int. Ed. Engl., 40, 2742 (2001).
- 54. Guan J., Puskar L., Esplugas R.O., Cox H. and Stace A.J., J. Chem. Phys., 127, 064311 (2007).
- 55. Walker N.R., Wright R.R., Barran P.E., Cox H. and Stace A.J., J. Chem. Phys., 114, 5562 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0025-0047