PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on Coordination and Noncovalent Interactions in Cu(II), L-Aspartic acid and Adenosine-5'-monophosphate Systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the L-aspartic acid (Asp) and adenosine-5c-monophosphate (AMP) systems molecular complexes (Asp)Hx(AMP) are formed as a result of noncovalent dipole-ion interactions between Asp and AMP. Stability constants of particular species has been determined and the interaction centres have been identified as the deprotonated carboxyl groups and the amine group from Asp along with the phosphate group and endocyclic nitrogen atoms from AMP. At pH close to 7 an inversion in the character of the interactions takes place: in an acidic medium the N(1)H group from AMP is a positive reaction centre, while in a basic medium after deprotonation it becomes a negative reaction centre. In the ternary system of Cu(II)/Asp/AMP the formation of protonated complexes of the type Cu(Asp)Hx(AMP), heteroligand complex Cu(Asp)(AMP) and hydroxocomplex Cu(Asp)(AMP)(OH) have been observed to form. The modes of coordination have been established on the basis of the spectroscopic data and equilibrium studies. At low pH the introduction of copper(II) ions to the binary system does not change the sites of intermolecular noncovalent interactions of the bioligands. Start ing from pH near 4, the presence of Cu(II) ions totally eliminates the noncovalent interactions between bioligands observed in the Asp/AMP binary systems.
Rocznik
Strony
2057--2065
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland, lomozik@amu.edu.pl
Bibliografia
  • 1. Sigel A. and Sigel H. (Eds.), Metal lons in Biological Systems, Interaction of Metal Ions with Nucleotides, Nucleic Acids, and Their Constituents, Marcel Dekker, NY 1996, vol. 32.
  • 2. Lippard S.J. and Berg J.M., Principles of Bioinorganic Chemistry, University Science Books, Mili Val-Icy, C/A, 1994.
  • 3. Martin R.B., Metal Ions Binding to Nucleoside and Nucleotides, in: A.V. Xavier (Ed) Frontiers in Bioinorganic Chemistry, VCH, Weinheim, 1986.
  • 4. Marzilli L.G., in: Eichhorn G.L., Marzilli L.G. (Eds.), Metal Ions in Genetic Information Transfer, Elsevier/North-Holland, NY 1981, Amsterdam, Oxford, p. 47.
  • 5. Trautwein A.X., Bioinorganic Chemistry: Transition Metals in Biology and Their Coordination Chemistry; Deutsch Forschungsgemeinschaft Weinheim Wiley-VCH: Weinheim, 1997
  • 6. Bush A.I., Curr. Opin. Chem. Biol., 4, 184 (2000).
  • 7. Stockel J., Safar J., Wallace A.C., Cohen F.E. and Prisiner S., Biochem., 37, 7185 (1998).
  • 8. Jameson R.F., Met. Ions Biol. Syst., 12, l (1981).
  • 9. Freeman H.C., Metal Complexes of Amino Acids and Peptides, in: Inorganic Biochemistry, Eichhorn G.L. (ed.), Elsevier, NY 1973, p. 122.
  • 10. Vaccarino F.M., Schwartz M.L., Hartigan D. and Leckman J.F., Cereb. Cortex, 5, 64 (1995).
  • 11. Fisher G., Lorenzo N., Abe H., Fujita E., Frey W.H., Emory C., Di Fiore M.M. and D'Aniello A., Amino Acids, 15,263(1998).
  • 12.  D'Aniello A., Fisher G., Migliaccio N., Cammisa G., D'Aniello E. and Spinelli R., Neurosc. Letters, 388, 49 (2005).
  • 13. Nagypal L, Gergely A. and Farkas E., Neurosc. Letters., 36, 699 (1974).
  • 14. Lomozik L., Wojciechowska A. and Jaskólski M., Monatsh. Chem., 114, 1185 (1983).
  • 15. Wilson E.W. Jr., Kasperian M.H. and Martin R.B., J. Am. Chem. Soc., 92, 5365 (1970).
  • 16. de Moraes Silva A., Merce A.L.R., Mangrich A.S., Souto C.A. and Felcman J., Polyhedron, 25, 1319 (2006).
  • 17. Kallay C., Varnagy K., Micera G., Sanna D. and Sovago L, J. Inorg. Biochem., 99, 1514 (2005).
  • 18. De Castro B., Lima J.L.F.C., Mayer I.H. and Reis S., J. Pharm. Biomed. Analysis, 16, 771 (1998).
  • 19. Antolini L., Menabue L., Saladini M., Battaglia L.P., Corrida A.B. and Minera G., J. Chem. Soc., Dalton Trans.,4,909(1988).
  • 20. Lopes de Miranda J. and Felcman J., Polyhedron, 22, 225 (2003).
  • 21. Friedberg E.C., Walker G.C. and Siede W, DNA Repair and Mutagenesis, ASM Press, Washington, DC.; Lewin B., Genes II, Oxford University Press, NY 2000.
  • 22. Ban Ch., Chung S., Park D. and Shim Y., Nucleic Acids Res., 32(13), el 10 (2004).
  • 23. unpublished data: Bregier-Jarzebowska R., Gasowska A. and Lomozik L., Bioinorg. Chem. Appl.,in press.
  • 24. Lomozik L., Monatsh. Chem., 115,261 (1984).
  • 25. Irving H.M., Miles M.G. and Pettit L.D., Anal. Chim. Acta, 475 (1967).
  • 26. Gans P., Sabatini A. and Yacca A., J. Chem. Soc., Dalton Trans., 1195 (1985).
  • 27. Ingri N., Kakolowicz W, Sillen L.G. and Warqwist B., Talanta, 14, 1261 (1967).
  • 28. Glasoe PK. and Long F.A., J. Phys. Chem., 64, 188 (1960).
  • 29. Gasowska A., J. Inorg. Biochem., 76, 346 (2003).
  • 30. Lomozik L. and Jastrząb R., J. Inorg. Biochem., 93, 132 (2003).
  • 31. Lomozik L. and Gasowska A., J. Inorg. Biochem., 72, 37 (1998).
  • 32. Lomozik L., Gasowska A., Bregier-Jarzebowska R. and Jastrząb R., Coord. Chem. Rev., 249, 2335 (2005).
  • 33. Lomozik L., Jaskólski M. and Wojciechowska A., Polish J. Chem., 65, 1797 (1991).
  • 34. Gasowska A., Lomozik L. and Jastrząb R., J. Inorg. Biochem, 78, 139 (2000).
  • 35. Lomozik L. and Gasowska A., J. Inorg. Biochem., 62, 103 (1996).
  • 36. Lomozik L., Gasowska A. and Bolewski L., J. Chem. Soc. Perkin Trans., 2, 1161 (1997).
  • 37. Massoud S.S. and Sigel H., Inorg. Chem., 27, 1447 (1988).
  • 38. Sigel H., Massoud S.S. and Tribolet R., J. Am. Chem. Soc., 110, 6857 (1988).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0025-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.