PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Consequences of Covalent and Non-Covalent Interactions on Conformational Preferences and pi-Electron Delocalization for the Substrate (Pyruvate) and Inhibitor (Oxamate) of Lactate Dehydrogenase - DFT Studies

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Conformational preferences and pi-electron delocalization for the isolated substrate (pyruvate) and inhibitor (oxamate) of lactate dehydrogenase (LDH), their protonated forms, adducts with alkali metal cations, and complexes with imidazole and/or the guanidinium cation (models for His195 and Arg171 of the LDH pocket, respectively) have been investigated at the DFT(B3LYP)/6-31++G(d,p) level. Covalent and non covalent bonds in acids, adducts and complexes cause greater conformational changes for pyruvate than for oxamate. Delocalization of pi electrons for the OCO frag ments is similar for similar structures. For isolated anions, adducts and complexes, the HOMED(OCO) values are between 0.9 and 1.0. For protonated forms, the HOMED(OCO) val ues are re duced to 0.55-0.75. Delocalization of pi electrons for the CCO fragment in pyruvate and for the NCO fragment in oxamate in creases when the anions form covalent and non-covalent bonds with other ions and molecules. The HOMED(CCO) values vary from 0.1 to 0.5 forsigma-pi conjugated pyruvate, whereas the HOMED(NCO) values vary from 0.9 to 1.0 for n-pi conjugated oxamate.
Rocznik
Strony
1077--1090
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
autor
  • Department of Chemistry, Warsaw Agricultural University , Nowoursynowska 159c, 02-776 Warszawa, Poland, ewa_raczynska@sggw.pl
Bibliografia
  • 1. a) Beebee T.J.C. and Burke J., Gene Structure and Transcription: In Focus, IRL Press Oxford, 1992, b) Creighton T. E., Protein Structures and Molecular Properties, W.H. Freeman and Co., New York, 1993 c) Saenger W., Principles of Nucleic Acid Structure, Springer, New York, 1994; d) Pozharskii A.F., Soldatenkov A.T. and Katrizky A.R., Heterocycles in Life and Society, Wiley, New York, 1997.
  • 2. Foye W.O., Lemke T.L. and Williams D.A., Principles of Medicinal Chemistry, Williams & Wilkins, Baltimore, MD, 1995.
  • 3. Sudbery P., Human Molecular Genetics, Longman, UK, 1998.
  • 4. a) Sneader W., Drug Discovery: The Evolution of Modern Medicine, Wiley, New York, 1985; b) Gilboa E. and Smyth C., Trends Genet., 10, 139 (1994); c) Freidman T., Trends Genet., 10, 210 (1994).
  • 5. a) Renault P., Calero S., Delorme C., Drouault S., Goupil-Feuillerat N., Guédon E. and Ehrlich S.D., Lait, 78, 39 (1998); b) Andersen H.W., Pedersen M.B., Hammer K. and Jensen P.R., Eur. J. Biochem., 268, 6379 (2001).
  • 6. Cooper A.J.L., Ginos J.Z. and Meister A., Chem. Rev., 83, 321 (1983).
  • 7. Sherman J., Luciano D. and Vander A.J., Human Physiology: the Mechanisms of Body Functions, VIIth ed., WCB McGraw-Hill, New York, 1998.
  • 8. Gawlita E., Paneth P. and Anderson V.E., Biochemistry, 34, 6050 (1995).
  • 9. Clarke A.R., Wigley D.B., Chia W.N., Barstaw D.A., Atkinson T. and Holbrook J.J., Nature, 324, 699 (1986).
  • 10. a) Sevriukov E.A. and Evseev L.P., Vopr. Med. Khim. , 40, 23 (1994); b) Safarik I. and Safarikova M., J. Chromatogr., B772, 33 (1999); c) Larsen T, J. Diary Res., 72, 209 (2005).
  • 11. a) Duczmal K.. Darowska M. and Raczyńska E.D., Vibr. Spectrosc., 37, 77 (2005); b) Raczyńska E. D., Duczmal K. and Hallmann M., Polish J. Chem., 81, 1655 (2007); c) Duczmal K., PhD Thesis, Warsaw Agricultural University (SGGW), Warszawa, 2007, (in Polish).
  • 12. Schmidt R.K. and Gready J.E., J. Mol. Struct. (Theochem), 498, 101 (2000), and references cited therein.
  • 13. a) Raczyńska E.D., Duczmal K. and Darowska M., Polish J. Chem., 79, 689 (2005); b) Raczynska E.D., Duczmal K. and Darowska M., Vibr. Spectrosc., 39, 37 (2005); c) Duczmal K., Hallmann M., Raczyńska E.D., Gal J.-F. and Maria P.-C, Polish J. Chem., 81, 1011 (2007).
  • 14. a) Parr R.O. and Yang W., Density Functional Theory of Atoms and Molecules, Oxford University Press, New York. 1989; b) Lee C., Yang W. and Parr R.G., Phys. Rev., 37, 785 (1988); c) Becke A. D., Phys. Rev., 38, 3098 (1988).
  • 15. a) Hehre W. J., Radom L., Schleyer P. v. R and Pople J.A., Ab initio Molecular Theory, Wiley, New York, 1986; b) Jensen F., Introduction to Computational Chemistry, John Wiley & Sons, New York, 1999.
  • 16. Frisch M. J., Trucks G.W., Schlegel H.B., Scuseria G.T., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A. Jr., Stratmann R. E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson C.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Oritz J.V., Baboul A. G., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D. J., Keith T., Al-Laham M. A., Peng C.Y., Nanayakkara A.,Challacombe M., Gill P.M.W., Johnson B.G., Chen W., Wong M.W., Andres J.L., Gonzalez C.,Head-Gordon M., Replogle E.S. and Pople J.A ., Gaussian 98, Gaussian, Inc., Pittsburgh PA. 1998.
  • 17. a) Reva I.D., Stephanian S.G., Adamowicz L. and Fausto R., J. Phys. Chem. A. 105, 4773 (2001), and references cited therein; b) Yang X., Orlova G., Zhou X.J. and Leung K.T., Chem. Phys. Lett. 380, 34 (2003), and references cited therein; c) Kakkar R., Pathak M and Radhika N.M., Org. Biomol. Chem., 71, 3727 (2006).
  • 18. Harata K., Sakabe N. and Tanaka J., Acta Cryst., B33, 210 (1977)
  • 19. a) Wallace F. and Wagner E., Spectrochim. Acta, 34A, 589 (1978); b) Tripath G.N. R. and Katon J.E., Spectrochim. Acta, 35A, 401 (1979); c) Wolfs I. and Desseyn H.O., Spectrochim. Acta, 51A. 1601 (1995).
  • 20.Tavale S.S., Pant L.M. and Biswas A.B., Acta Cryst. 14, 1281 (1961).
  • 21. Rach W., Kiel G. and Gattow G. Z., Anorg. Allg. Chem., 563, 87 (1988).
  • 22. Kratochvil B., Ondraček J., Krechl J. and Hašek J., Acta Cryst. C43, 2182 (1987).
  • 23. Aakeröy C. B., Hughes D.P. and Nieuwenhuyzen M., J. Am. Chem. Soc., 118, 10134(1996).
  • 24. Beagley B and Small R.W. H., Proc. R. Soc. (London) A, 275, 469 (1963).
  • 25. Krygowski T.M., J. Chem. Int. Comput. Sci., 33, 70 (1993)
  • 26. Raczyńska F.D., Krygowski T.M., Duczmal K. and Hallmann M., XVIII International Conference on Physical Organic Chemistry, Warsaw, 2006 (Book of abstracts, p. 31).
  • 27. Krygowski T.M. and Cyrański M.K., Chem. Rev., 101, 1385 (2001)
  • 28. a) Raczyńska E.D., Polish J. Chem., 79, 749 (2005); b) Raczyńska E.D., Polish J. Chem., 79, 1003
  • 29. a) Kruszewski J. and Krygowski T.M., Tetrahedron Letters, 3839 (1972); b) Krygowski T.M. and Kruszewski J., Bull. Acad. Polon. Sci., Ser. Sci. Chim., 21, 409 (1973), and references cited therein.
  • 30. Clarke A.R., Atkinson T. and Holbrook J.J., Trends Biochem. Sci., 14, 101 (1989).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0024-0118
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.