PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photoinduced Intramolecular Charge Separation and Recombination in a Donor-Acceptor Dyad Linked via Tetrahedral Carbon Atom. Photophysics of a Malachite Green Lactone Analogue

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lactone forms of triarylmethane dyes (LTAM) with donor-acceptor-donor triad structure undergo ultrafast quantitative intramolecular charge separation (CS) with formation of a highly polar 1CT state. To clarify the role of the electron donating part in the CS process, 3-methyl-3-(4-dimethylaminophenyl)phthalide (MGLA), an analogue of malachite green lactone (MGL) with only one D part in a D-A dyad structure has been synthesized and its photophysics compared to those of MGL, leucomalachite green (MGH) and malachite green leuconitrile (MGCN). The photoinduced electron transfer processes in MGLA show close analogy with MGL and prove that (i) the tetrahedral carbon atom coupled with C-O bond in quasi-spiro configuration is a very efficient link in ultrafast intramolecular electronic communication and that (ii) the photoinduced charge separation and recombination processes in LTAM molecules involve essentially only one electron-donating group.
Rocznik
Strony
865--882
Opis fizyczny
Bibliogr. 64 poz., rys.
Twórcy
autor
autor
autor
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland fax: +48 22 343 33 33, karpiuk@ichf.edu.pl
Bibliografia
  • l. Huber R., Moser J.E., Gratzel M. and Wachtveitl J., J. Phys. Chem. B, 106, 6494 (2002).
  • 2. Schnadt J., Brühwiler P.A., Patthey L., 0'Shea, J.N., Södergren S., Odelius M., Ahuja R, Karis O.,Bässler M., Persson P., Siegbahn H., Lunell S. and Martensson N., Nature, 418, 620 (2002).
  • 3. Bagchi B. and Gayathri N., Adv. Chem. Phys., 107, l (1999).
  • 4. (a) Jortner J., Bixon M., Heitele H. and Michel-Beyerle M.E., Chem. Phys. Lett., 197, 131 (1992);(b) Bixon M. and Jortner J., J. Phys. Chem., 97, 13061 (1993).
  • 5. Baigar E., Gilch R, Zinth W., Stöckl M., Harter P, von Feilitzsch T. and Michel-Beyerle M.E., Chem. Phys. Lett., 352, 176(2002).
  • 6. Son D.H., Kambhampati R, Kee T.W. and Barbara P.F., J. Phys. Chem. A, 106, 4591 (2002).
  • 7. Mataga N., Chosrowjan H., Taniguchi S., Shibata Y, Yoshida N., Osuka A., Kikuzawa T. and Okada T., J. Phys. Chem. A, 106, 12191 (2002).
  • 8. Giaimo J.M., Gusev A.V. and Wasielewski M.R., J. Am. Chem. Soc., 124, 8530 (2002).
  • 9. KovalenkoS.A.,Perez Lustres J.L.,Ernsting N.P. and Rettig W., J. Phys. Chem. A, 107,10228(2003).
  • lO. Kubo M., Mori Y., Otani M., Murakami M., Ishibashi Y., Yasuda M., Hosomizu K., Miyasaka H.,Imahori H. and Nakashima S., J. Phys. Chem. A, 111, 5136 (2007).
  • ll. Benniston A.C. and Harriman A., Chem. Soc. Rev, 35, 169 (2006).
  • 12. Verhoeven J.W.,Adv. Chem. Phys., 106, 603 (1999).
  • 13. Grabowski Z.R., Rotkiewicz K. and Rettig W., Chem. Rev., 103, 3899 (2003).
  • 14. Hopfield J.J., Proc. Nat. Acad. Sci., 71, 3640 (1974).
  • 15. Minkin V.L, Chem.Rev., 104, 2751 (2004).
  • 16. Karpiuk J., Grabowski Z.R. and DeSchryver F.C., J. Phys. Chem., 98, 3247 (1994).
  • 17. Wong K.T., Ku S.Y, Cheng Y.M., Lin X.Y, Hung Y.Y, Pu S.C., Chou P.T, Lee G.H. and Peng S.M., J. Org. Chem., 71, 456 (2006).
  • 18. Karpiuk J., Phys. Chem. Chem. Phys., 5, 1078 (2003).
  • 19. Bizjak T., Karpiuk J., Lochbrunner S. and Riedle E., J. Phys. Chem. A, 108, 10763 (2004).
  • 20. The term „triarylmethane lactones" is used here as a synonym for „lactone forms of triarylmethanedyes".
  • 21. Karpiuk J., Ultrafast intramolecular charge transfer processes in donor-acceptor systems built up on tetrahedral carbon atom, Habilitation thesis, Institute of Physical Chemistry PAS, Warsaw, 2007 (in Polish).
  • 22. FischerO.,Justus Liebigs Ann. Chem., 206, 83 (1881).
  • 23. Velapoldi R.A., National Bureau of Standards 378, Proc. Conf. NBC, Gaithersburg, 1972; p. 231.
  • 24. Eaton D.F., PureAppl. Chem., 60, 1107 (1988).
  • 25. Jasny J., J. Lumin., 17, 143 (1978).
  • 26. Absorption coefficients in acetonitrile (and not in, e. g., w-hexane) are compared because of very low solubility of MGŁA in Iow polar solvents.
  • 27. Ballester M. and Riera J., Spectrochim. Acta, 23A, 1533 (1967).
  • 28. van Walree C.A., Roest M.R., Schuddeboom W., Jenneskens L.W., Verhoeven J.W., Warman J.M., Kooijman H. and Spek A.L., J. Am. Chem. Soc., 118, 8395 (1996).
  • 29. Herz M.L., J. Am. Chem. Soc., 97, 6777 (1975).
  • 30. Manring L.E. and Peters K.S., J. Phys. Chem., 88, 3516 (1984).
  • 31. Kuzuya M., Miyake F. and Okuda T., Chem. Pharm. Bull., 31, 791 (1983).
  • 32. Karpiuk, J., Photophysical and photochemical processes in lactone forms of some rhodamines, PhD Thesis, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, 1996.
  • 33. Verhoeven J.W, Dirks I.P. and De Boer T.J., Tetrahedron, 25, 4037 (1969).
  • 34. Scherer T., Hielkema W, Krijnen B., Hermant R.M., Eijckelhoff C, Kerkhof F., Ng A.K.F., Verleg R., van der Tol E.B., Brouver A.M. and Verhoeven J.W, Red. Trav. Chim. Pays-Bas, 112, 535 (1993).
  • 35. Reichardt C., Chem. Rev., 94, 2319 (1994).
  • 36. Jarikov V.V. and Neckers D.C., Adv. Photochem., 26, l (2001), and references cited therein.
  • 37. Geiger M.W, Turro N.J. and Waddell W.H., Photochem. Photobiol., 25, 15 (1977).
  • 38. As opposed to MGL in ACN, the fluorescence spectrum of MGLA in ACN recorded at room temperature showed a smali band in the region 24000-29000 cm-1 with peak intensity at 27500 cm-1 50 times lower than in the maximum at 16500 cm-1. The band resulted most probably from impurity traces in ACN and was not observed for MGŁA in THF or butyl acetate.
  • 39. Brown F.G. and Cosa J., Chem. Phys. Lett., 45, 429 (1977).
  • 40. Birks J.B., Photophysics of Aromatic Molecules, J. Wiley, New York, 1978.
  • 41. Mulliken R.S. and Person W.B., Molecular Complexes, John Wiley & Sons, Inc., New York, 1969, p. 26.
  • 42. Onsager L., J. Am. Chem. Soc., 58, 1486 (1936).
  • 43. (a) Lippert E., Z Naturforschg., lOa, 541 (1955); (b) MatagaN., Kaifu Y. and Koizumi M., Bull. Chem. Soc. Japan, 28, 690 (1955).
  • 44. Beens H., Knibbe H. and Weller A., J. Chem. Phys., 47, 1183 (1967).
  • 45. Karpiuk J., J. Phys. Chem. A, 108, 11183 (2004).
  • 46. Ground state dipole moment of MGLA estimated with molecular mechanics calculations is equal to 4.2 D.
  • 47. Kellog B.A., Brown R.S. and McDonald R.S., J. Org. Chem., 59, 4652 (1994).
  • 48. Lewis F.D., Wagner-Brennan J.M. and Miller A.M., Can. J. Chem., 77, 595 (1999).
  • 49. Murov S.L., Carmichael I. and Hug G.L. (Eds.), Handbook of Photochemistry, Marcel Dekker, New York, 1993.
  • 50. Lim E.C. and Chakrabarti S.K., J. Chem. Phys., 47, 4726 (1967).
  • 51. Estimated from the 0-0 band in phosphorescence spectrum of phtalide.
  • 52. Karolak E. and Karpiuk L,paper in preparation.
  • 53. Spears K.G., Gray T.H. and Huang D., J. Phys. Chem., 90, 779 (1986).
  • 54. Rehm D. and Weller A., Isr. J. Chem., 8, 259 (1970).
  • 55. Sumi H. and Marcus R.A., J. Chem. Phys., 84, 4894 (1986).
  • 56. Nagasawa Y, Vartsev A.P., Tominaga K., Bisht P.B., Johnson A.E. and Yoshihara K., J. Phys. Chem., 99, 653 (1995).
  • 57. Klein U.K.A. and Hafner F.W, Chem. Phys. Lett., 43, 141 (1976).
  • 58. Grigoryeva T.M., Ivanov V.L., Nizamov N. and Kuzmin M.G., Dokl. Akad. Nauk, 232, 1108 (1977).
  • 59. Holmes Jr. E.O., J. Phys. Chem., 61, 434 (1957).
  • 60. Kapturkiewicz A., Herbich J., Karpiuk J. and Nowacki J., J. Phys. Chem. A, 101, 2332 (1997).
  • 61. Herbich J. and Kaprurkiewicz A., Chem. Phys., 158, 143 (1991).
  • 62. Herbich J. and Kapturkiewicz A., Chem. Phys., 170, 221 (1993).
  • 63. Englman R. and Jortner J., Mol. Phys., 18, 145 (1970).
  • 64. Turro N.J., Modern Molecular Photochemistry, Benjamin/Cummings, New York, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0024-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.