PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum Chemical Study of Hydroxylation of Alkanes by Hypofluorous Acid

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experimentally observed hydroxylation of alkanes by hypofluorous acid (one of Rozen's oxidation reactions) was investigated using the methods of quantum chemistry. It was shown that the high efficiency of the reaction may be explained by self-catalysis. The oxidizing HOF molecule transfers the oxygen atom to a substrate, which is accompanied by the HF formation, while the second hypofluorous acid molecule stabilizes the oxidizing HOF molecule by a hydrogen bond. The hydroxylation barriers were found to decrease with increased coordination of the oxidized carbon atom by methyl groups, in agreement with the experiment. In the gas phase, the calculated DFT/B3LYP reaction barriers amount to 22.5, 14.5, 9.0, and 6.4 kcal/mol for oxidation of methane, ethane, central carbon atoms of propane, and 2-methylpropane, respectively; for a terminal C-H propane bond, a barrier was enumerated to 13.9 kcal/mol. It was also found that the reaction can be catalyzed by the product molecule, hydrogen fluoride (as first suggested for ethylene in Sertchook R., Boese A.D., Martin J.M.L., J. Phys. Chem. A, 110, 8275 (2006)), and common features of the H-bond assisted catalysis were investigated. The analogous but very much less favorable hydroxylation by hypochlorous acid molecule was also briefly discussed.
Rocznik
Strony
649--659
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
autor
autor
  • 1J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic,Dolejškova St. 3, 182 23 Prague 8, Czech Republic, m.srnec@seznam.cz
Bibliografia
  • 1. Schroder D. and Schwarz H., Top. Organomet. Chem., 22, 1 (2007).
  • 2. Nachtigallova D., Roeselova M. and Zahradnik R., Chem. Phys. Lett., 270, 357 (1997).
  • 3. Solomon E.I., Brunold T.C., Davis M.I., Kemsley J.N., Lee S.K., Lehnert N., Neese F., Skulan A.J., Yang YS. and Zhou J., Chem. Rev., 100, 235 (2000).
  • 4. Shaik S., Hirao H. and Kumar D., Nat. Prod. Rep., 24, 533 (2007).
  • 5. Groves J.T., Proc. Natl. Acad. Sci. USA, 100, 3569 (2003).
  • 6. Hayaishi O., Katagiri M. and Rothberg S., J. Am. Chem. Soc, 77, 5450 (1955).
  • 7. Rozen S., Eur. J. Org. Chem., 12, 2433 (2005).
  • 8. Sertchook R., Boese A.D. and Martin J.M.L., J. Phys. Chem. A, 110, 8275 (2006).
  • 9. Srnec M., On5ak M. and Zahradnik R., J. Phys. Chem. A, submitted (2008).
  • 10.Rozen S., Brand M. and Kol M., J. Am. Chem. Soc, 111, 8325 (1989).
  • 11.Becke A.D., J. Chem. Phys., 98, 1372 (1993).
  • 12.Cramer C.J., Essentials of Computational Chemistry: Theories and Models, John Wiley & Sons., Chichester 2002, 1st edition.
  • 13.Becke A.D.,.7. Chem. Phys., 104, 1040 (1996).
  • 14. Dunning T.H., J. Chem. Phys., 90, 1007 (1989).
  • 15. Krishnan R., Binkley J.S., Seeger R. and Pople J.A., J. Chem. Phys., 72, 650 (1980).
  • 16. Jurecka P., Sponer J., Cerny J. and Hobza P., Phys. Chem. Chem. Phys., 8, 1985 (2006).
  • 17. Ahlrichs R., Bar M., Haser M., Horn H. and Kolmel C, Chem. Phys. Lett., 162, 165 (1989).
  • 18. Boys S.F. and Bernardi F., Mol. Phys., 19, 553 (1970).
  • 19. Gaussian 03, R.C., Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., RegaN., Petersson G.A., Nakatsuji H., HadaM., Ehara M., ToyotaK., FukudaR., Hasegawa J., Ishida M., Nakajima T, Honda Y, Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Bakken V., Adamo C, Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C, Ochterski J.W., Ayala P.Y, Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T, Al-Laham M.A., Peng C.Y, Nanayakkara A., Challacombe M., Gill P.M. W, Johnson B., Chen W, Wong M.W., Gonzalez C. and Pople J.A., Gaussian, Inc., Wallingford CT, 2004.
  • 20. Klamt A. and Schuurmann G., J. Chem. Soc, Perkin Trans. 2, 5, 799 (1993).
  • 21. Reed A.E., Curtiss L.A. and Weinhold F., Chem. Rev., 88, 899 (1988).
  • 22. Neese F., Zaleski J.M., Zaleski K.L. and Solomon E.I., J. Am. Chem. Soc, 122, 11703 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0024-0084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.