PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reachability of fractional positive continuous-time linear systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new class of fractional linear continuous-time linear systems described by the state equation is introduced. The solution to the state equations is derived using the Laplace transform. Necessary and sufficient conditions are established for the internal and external positivity of the fractional systems. Sufficient conditions are given for the reachability of the fractional positive systems.
Słowa kluczowe
Twórcy
autor
  • Professor at Białystok Technical University, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland, kaczorek@isep.pw.edu.pl
Bibliografia
  • [1] N. Engheta, “On the role of fractional calculus in electromagnetic theory”, IEEE Trans. Atenn. Prop., vol. 39, no. 4, 1997, pp. 35-46.
  • [2] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000.
  • [3] N.M.F. Ferreira and J.A.T. Machado, “Fractional-order hybrid control of robotic manipulators”. In: Proc. 11th Int. Conf. Advanced Robotics, ICAR'2003, Coimbra, Portugal, pp. 393-398.
  • [4] K. Gałkowski, A. Kummer, “Fractional polynomials and nD systems”. In: Proc IEEE Int. Symp. Circuits and Systems, ISCAS'2005, Kobe, Japan, CD-ROM.
  • [5] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag: London, 2002.
  • [6] T. Kaczorek, “Computation of realizations of discrete time systems”, Bull. Pol. Acad. Sci. Techn., vol. 54, no. 3, 2006, pp. 347-350.
  • [7] T. Kaczorek, Reachability and controllability to zero tests for standard and positive fractional discrete-time systems.
  • [8] T. Kaczorek, “,Reachability and controllability to zero of positive fractional discrete time-systems, Machine Intelligence and Robotic Control vol. 6, no. 4, 2007.
  • [9] T. Kaczorek, “Reachability and controllability to zero ofcone fractional linear systems” (in press).
  • [10] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differenctial Equations , Willey: New York, 1993.
  • [11] M. Moshrefi-Torbati and K. Hammond, Physical and geometrical interpretation of fractional operator , J. Franklin Inst., vol. 335B, no. 6, 1998, pp. 1077-1086.
  • [12] K. Nishimoto, ,Fractional Calculus, Decartess Press: Koriama, 1984.
  • [13] K. B. Oldham and J. Spanier, , The Fractional Calculus Academic Press: New York, 1974.
  • [14] M. D. Ortigueira, “Fractional discrete-time linear systems”. In:Proc. of the IEE-ICASSP 97 , Munich, Germany, IEEE, New York, vol. 3, pp. 2241-2244.
  • [15] P. Ostalczyk, “The non-integer difference of the discrete-time function and its application to the control system synthesis”,Int. J. Syst. Sci., vol. 31, no. 12, 2000, pp. 1551-1561.
  • [16] P. Ostalczyk, “Fractional-Order Backward Difference Equivalent Forms Part I Horner's Form”. In: Proc. 1 IFAC Workshop Fractional Differentiation and its Applications FDA'04, Enseirb, Bordeaux, France, 2004, pp. 342-347.
  • [17] P. Ostalczyk, “Fractional-Order Backward Difference Equivalent Forms Part II Polynomial Form”. In: Proc. 1 IFAC Workshop Fractional Differentiation and its Applications FDA'04, Enseirb, Bordeaux, France, 2004, pp. 348-353.
  • [18] A. Oustalup, , Commande CRONE, Hermé: Paris, 1993.
  • [19] A. Oustalup, La dérivation non entiére, Hermés 1995.
  • [20] I. Podlubny, Fractional Differential Equations, Academic Press: San Diego, 1999.
  • [21] I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation”,Fract. Calc. Appl. Anal., vol. 5, no. 4, 2002, pp. 367-386.
  • [22] I. Podlubny, L. Dorcak and I. Kostial, “On fractional derivatives, fractional order systems and PI lambda D mi -controllers”.In: Proc. 36 IEEE Conf. Decision and Control, San Diego, CA, 1997, pp. 4985-4990.
  • [23] M.E. Reyes-Melo, J.J. Martinez-Vega, C.A. Guerrero-Salazar and U. Ortiz-Mendez, “Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order”,J. Optoel. Adv. Mat. , vol. 6, no. 3, 2004, pp. 1037-1043.
  • [24] D. Riu, N. Retiére and M. Ivanes, “Turbine generator modeling by non-integer order systems”. In: Proc. IEEE Int. Electric Machines and Drives Conference, IEMDC 2001, Cambridge, MA, 2001, pp. 185-187.
  • [25] S. G. Samko, A.A. Kilbas and O.I. Martichew, Fractional Integrals and derivative. Theory and Application, Academic Press: London, 1993.
  • [26] D. Sierociuk and D. Dzieliński, “Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation”, Int. J. Appl. Math. Comp.Sci., vol. 16, no. 1, 2006, pp. 129-140.
  • [27] M. Sjöberg and L. Kari, “Non-linear behavior of a rubber isolator system using fractional derivatives”, Vehicle Syst. Dynam. vol. 37, no. 3, 2002, pp. 217-236.
  • [28] B. M. Vinagre, C. A. Monje and A.J. Calderon, .Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC'02 TW#2: Fractional calculus Applications in Autiomatic Control and Robotics
  • [29] B. M. Vinagre and V. Feliu, “Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures”.In:Proc. 41st IEEE Conf. Decision and Control, Las Vegas,NV, 2002, pp. 214-239.
  • [30] V. Zaborowsky and R. Meylaov, “Informational network traffic model based on fractional calculus”. In: Proc. Int. Conf. Info-tech and Info-net, ICII 2001, Beijing, China, vol. 1, pp. 58-63.BUJ
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0023-0139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.