PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
. In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth.
Czasopismo
Rocznik
Strony
97--103
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Department of Medical Physics, Tarbiat Modares University, Al-Ahmad and Chamran Cross, Tehran, Iran, Tel.: +98 21 88011001 ext. 3892, Fax: +98 21 88006544, bijanhashemi@yahoo.com
Bibliografia
  • 1. Asell M (1999) Development of optimized radiation therapy using external electron and photon beams. PhD thesis. Medical Radiation Physics, Karolinska Institutet, Stockholm University, Stockholm, Sweden
  • 2. Bieda MR, Antolak J, Hogstrom KR (2001) The effect of scattering foil parameters on electron-beam Monte Carlo calculations. Med Phys 28:2527−2534
  • 3. Bjarngard BE, Pionteck RW, Svensson GK (1976) Electron scattering and collimation system for a 12 MeV linear accelerator. Med Phys 3:153−158
  • 4. Brahme A, Lax I, Andreo P (1981) Electron beam dose planning using discrete Gaussian beams (mathematical background). Acta Radiol Oncol 20:147−158
  • 5. Bruinvis IAD, Mathol WAF (1988) Calculation of electron beam depth-dose curves and output factors for arbitrary field shapes. Radiother Oncol 11:395−404
  • 6. Chen JZ, Van Dyk J, Lewis C, Battista J (2001) A twosource model for electron beams: calculation of relative output factors. Med Phys 28:1735−1745
  • 7. Choi MC, Purdy JA, Gerbi B, Abrath FG, Glasgow GP (1979) Variation of output factor caused by secondary blocking for 7−16 MeV electron beams. Med Phys 6:137−139
  • 8. Ebert MA, Hoban PW (1995) A model for electron-beam applicator scatter. Med Phys 22:1419–1429
  • 9. Ebert MA, Hoban PW (1995) A Monte Carlo investigation of electron-beam applicator scatter. Med Phys 22:1431−1435
  • 10. Hogstrom KR, Mills MD, Almond PR (1981) Electron beam dose calculations. Phys Med Biol 26:445−459
  • 11. Huizenga H, Storchi PRM (1987) The in-air scattering of clinical electron beams as produced by accelerators with scanning beams and diaphragm collimators. Phys Med Biol 32:1011−1029
  • 12. IAEA (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna
  • 13. ICRU (1984) Radiation dosimetry: electron beams with energies between 1 and 50 MeV. ICRU Report no. 35. International Commission on Radiation Units and Measurements, Bethesda
  • 14. Janssen JJ, Korevaar EW, Storchi PRM, Huizenga H (1997) Numerical calculation of energy deposition by high-energy electron beams: III-B. Improvements to the 6D phase space evolution model. Phys Med Biol 42:1441−1449
  • 15. Janssen JJ, Korevaar EW, Storchi PRM, Huizenga H (2001) A model to determine the initial phase space of a clinical electron beam from measured beam data. Phys Med Biol 46:269−286
  • 16. Kassaee A, Altschuler MD, Ayyalsomayajula S, Bloch P (1994) Influence of cone design on the electron beam characteristics on clinical accelerators. Med Phys 21:1671−1676
  • 17. Kawrakow I, Fippel M, Friedrich K (1996) Electron dose calculation using a voxel based Monte Carlo algorithm (VMC). Med Phys 23:445−457
  • 18. Khan FM (2003) The physics of radiation therapy, 3rd ed. Lippincott Williams and Wilkins, Philadelphia
  • 19. Lax I, Brahme A (1980) Collimation of high energy electron beams. Acta Radiol Oncol 19:199−207
  • 20. Ma CM, Jiang SB (1999) Monte Carlo modeling of electron beams from medical accelerators. Phys Med Biol 44:R157−R189
  • 21. Ma CM, Li JS, Jiang SB et al. (2005) Effect of statistical uncertainties on Monte Carlo treatment planning. Phys Med Biol 50:891−907
  • 22. McParland BJ (1989) A method of calculating the output factors of arbitrarily shaped electron fields. Med Phys 16:88−93
  • 23. Muller-Runkel R, Ovadia J, Borger F, Culbert H, Rohowsky B (1985) A shaping device for irregular electron fields for the Therac-20 accelerator. Med Phys 12:90−92
  • 24. Nair RP, Mair TKM, Wrede DE (1983) Shaped field electron dosimetry for a Philips SL25/10 linear accelerator. Med Phys 10:356−360
  • 25. Neuenschwander H, Mackie TR, Reckwerdt PJ (1995) MMC − a high performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543−574
  • 26. Rogers DWO, Faddegon BA, Ding GX, Ma CM, Wei JS, Mackie TR (1995) BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22:503−525
  • 27. Rogers DWO, Walters B, Kawrakow I (2005) BEAMnrc users manual. NRCC Report PIRS-0509(A). NRCC,Ottawa
  • 28. SINS (1996) NEPTUN 10PC technical and operational documentation. Sołtan Institute for Nuclear Studies,Department of Nuclear Equipment, High Technology Center, Otwock-Świerk, Poland
  • 29. Svensson H, Hittinger G (1967) Influence of collimating systems on dose distribution from 10 to 35 MeV electron radiation. Acta Radiol Oncol 6:404−409
  • 30. Van Battum LJ, Van der Zee W, Huizenga H (2003) Scattered radiation from applicators in clinical electron beams. Phys Med Biol 48:2493−2507
  • 31. Van der Laarse R, Bruinvis IAD, Farid Nooman M (1978)Wall-scattering effects in electron beam collimation. Acta Radiol Oncol 17:113−1124
  • 32. Verhaegen F, Symons-Tayler R, Liu HH, Nahum A (2000) Backscatter towards the monitor ion chamber in high-energy photon and electron beams: charge integration vs. Monte Carlo simulation. Phys Med Biol 45:3159−3170
  • 33. Walters B, Kawrakow I, Rogers DWO (2004) DOSXYZnrc users manual. NRCC Report PIRS-794(rev. B). NRCC, Ottawa
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0023-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.