Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computation of the effect of pH on spur chemistry in water radiolysis at elevated temperatures

Treść / Zawartość
Warianty tytułu
Proceedings of the 14th National Scientific Meeting of the Polish Radiation Society 24-26 Septemebr 2007, Kielce, Poland
Języki publikacji
Diffusion-kinetic model has been employed to calculate the effect of pH and associated ionic strength on the primary yields in the radiolysis of water from ambient temperature to 200°C. Account has been taken of the effect of ionic strength, I, up to 0.1 molźdm-3 in both acidic and alkaline solutions resulting from the addition of H+ and OH-,assuming the counter ions have unit charge. The primary yields are essentially independent of pH for I ? 10-4. AboveI = 10-4 molźdm-3 the primary yields of e-aq and H2 in acidic solutions decrease whereas the primary yields of the H atom, hydroxyl radical and hydrogen peroxide increase. At I >10-3 molźdm-3 in alkaline solutions, the OH radical and hydrogen peroxide are partially converted into Oo- and HO-2 , respectively. Increases in the total yields GoOH + GOo- and Ge-aq + GHo and a decrease in GH2O2 + GHO-2 have been found with increasing pH. At elevated temperatures the effect of pH is diminished. The temperature effect on the primary yields in acidic and alkaline solutions is nearly the same as in neutral water.
Opis fizyczny
Bibliogr. 9 poz., rys.
  • Institute of Applied Radiation Chemistry, Technical University of Łódź, 116 Żeromskiego Str., 90-924 Łódź, Poland, Tel.: +48 42 631 31 09, Fax: +48 42 636 50 08,
  • 1. Atkins PW (1998) Physical chemistry. Oxford University Press, Oxford-Melbourne-Tokyo
  • 2. Burns WG, Sims HE, Curtis AR (1984) Radiation chemical diffusion kinetic calculations with prescribed and nonprescribed diffusion. Radiat Phys Chem 23:143–180
  • 3. Elliot AJ (1994) Rate constants and G-values for the simulation of the radiolysis of light water over the range 0–300°C. AECL Report, AECL-11073, COG-94-167-I
  • 4. Elliot EJ, Chenier MP, Ouellette DC (1993) Temperature dependence of the g values for H2O and D2O with low linear energy transfer radiation. J Chem Soc Faraday Trans 89:1193–1197
  • 5. Ferradini C, Jay-Gerin J-P (2000) The effect of pH on water radiolysis: a still open question – a minireview. Res Chem Intermed 26;6:549–565
  • 6. Swiatla-Wojcik D, Buxton GV (1995) Modelling of radiation spur processes in water at temperatures up to 300°C. J Phys Chem 99:11464–11471
  • 7. Swiatla-Wojcik D, Buxton GV (2000) Diffusion-kinetic modelling of the effect of temperature on the radiation chemistry of heavy water. Phys Chem Phys 2:5113–5119
  • 8. Swiatla-Wojcik D, Buxton GV (2005) On the possible role of the reaction H + H2O → H2 + OH in the radiolysis of water at high temperatures. Radiat Phys Chem 74:210–219
  • 9. Weston RE, Schwarz HA (1972) Chemical kinetics. Prentice-Hall, New Jersey
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.