PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiotracer experiments and CFD simulation for industrial hydrocyclone performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrocyclone is a device for solid concentration or selection of solid particles from a liquid-solid mixture. It is widely used in the mineral industry for selection of solid particles from a few to a few hundred micrometers. This paper presents a radiotracer experiment and computational simulation of selection of solid particles in a hydrocyclone of Fi-500 mm, which is used in the industrial copper ore concentration process. The simulation, based on computational fluid dynamics (CFD) techniques, allowed obtaining the velocity and concentration distribution for a real mixture flowing in the hydrocyclone. The mixture was composed of water and nine solid phases of different grain sizes. Finally, the selection curve of solid grains was obtained and compared with the experimental radiotracer results.
Czasopismo
Rocznik
Strony
115--123
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 39 15; Fax: +48 12 634 00 10, stegowski@novell.ftj.agh.edu.pl
Bibliografia
  • 1. Axelsson G, Barry BJ, Berne P et al. (2004) Radiotracer application in industry – a guidebook. International Atomic Energy Agency, Vienna
  • 2. Bennett MA, Williams RA (2004) Monitoring the operation of an oil/water separator using impedance tomography. Miner Eng 17:605−614
  • 3. Bhusarapu S, Al-Dahhan M, Dudukovic MP (2004) Quantification of solids flow in a gas-solid riser: single radioactive particle tracking. Chem Eng Sci 59:5381−5386
  • 4. Chiné B, Concha F (2000) Flow patterns in conical and cylindrical hydrocyclones. Chem Eng J 80:267−273
  • 5. Cullivan JC, Williams RA, Dyakowski T, Cross CR (2004) New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics. Miner Eng 17:651−660
  • 6. Dai GQ, Chen WM, Li JM, Chu LY (1999) Experimental study of solid-liquid two-phase flow in a hydrocyclone. Chem Eng J 74:211−216
  • 7. Dwaria RK, Biswasb MN, Meikapa BC (2004) Performance characteristics for particles of sand FCC and fly ash in a novel hydrocyclone. Chem Eng Sci 59:671−684
  • 8. Dyakowski T, Jeanmer LFC, Jaworski AJ (2000) Applications of electrical tomography for gas-solids and liquid-solids flow – a review. Powder Technol 112:174−192
  • 9. Fisher MJ, Flack RD (2002) Velocity distributions in a hydrocyclone separator. Exp Fluids 32:302−312
  • 10. Frachon M, Cilliers JJ (1999) A general model for hydrocyclone partition curves. Chem Eng J 73:53−59
  • 11. Kraipech W, Chen W, Parma FJ, Dyakowski T (2002)Modelling the fish-hook effect of the flow within hydrocyclones.Int J Miner Process 66:49−65
  • 12. Nageswararao K, Wiseman DM, Napier-Munn TJ (2004) Two empirical hydrocyclone models revisited. Miner Eng 17:671−687
  • 13. Narasimha M, Sripriya R, Banerjee PK (2005) CFD modelling of hydrocyclone − prediction of cut size. Int J Miner Process 75:53−68
  • 14. Nowakowski AF, Cullivan JC, Williams RA, Dyakowski T (2004) Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge? Miner Eng 17:661−669
  • 15. Olson TJ, Van Ommen R (2004) Optimizing hydrocyclone design using advanced CFD model. Miner Eng 17:713−720
  • 16. Pope BS (2000) Turbulent flow. Cambridge University Press, Cambridge, UK
  • 17. Schlaberg HS, Frank Podd FJW, Hoyle BS (2000) Ultrasound process tomography system for hydrocyclones. Ultrason 38:813−816
  • 18. Slack MD, Del Porte S, Engelman MS (2004) Designing automated computational fluid dynamics modeling tools for hydrocyclone design. Miner Eng 17:705−711
  • 19. Stęgowski Z (1993) Accuracy of residence time distribution function parameters. Nucl Geophys 7;2:335−341
  • 20. Stęgowski Z, Furman L (2004) Radioisotope tracer investigation and modeling of copper concentrate dewatering process. Int J Miner Process 73:37−43
  • 21. Stęgowski Z, Leclerc J-P (2002) Determination of the solid separation and residence time distributions in an industrial hydrocyclone using radioisotope tracer experiments. Int J Miner Process 66:67−77
  • 22. Stęgowski Z, Nowak E, Furman L (2004) Combining CFD simulation with experimental RTD funcion for hydrocyclone separator studies. In: Integration of tracing with computational fluid dynamics for industrial process investigation. International Atomic Energy Agency, Vienna. IAEA-TECDOC-1412, pp 161−178
  • 23. Wilkes JO (1999) Fluid mechanics for chemical engineers.Prentice Hall PTR, Upper Saddle River, New Jersey
  • 24. Yang IH, Shin CB, Kim T-H, Kim S (2004) A threedimensional simulation of a hydrocyclone for the sludge separation in water purifying plants and comparison with experimental data. Miner Eng 17:637−641
  • 25. Zbeng Ch, Bennet GD (2002) Applied contaminant transport modeling. John Wiley and Sons, New York
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0023-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.