PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Burn rate profiles for compression ignition engine model

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was done in order to show general trends as user-defined burn profiles are changed for Wave model of naturally aspirated compression ignition engine. The recent advances would have been impossible without the help from the computer-aided engineering (CAE) methods. For the processes governing engine performance and emissions, two basic types of models have been developed. The presented measurements of cylinder pressure and computation of its predicted equivalent have shown that user-defined burn profile should be established using gross (chemical) heat release rate. Such approach offers better accuracy then the net heat release profile which is by definition a simplified measure of combustion process.
Twórcy
  • Częstochowa University of Technology Institute of Internal Combustion Engines and Control Engineering Al. Armii Krajowej 21 42-200 Częstochowa tel.: 034-3250515, mendera@imc.pcz.czest.pl
Bibliografia
  • [1] C.R. Ferguson, A.T. Kirkpatrick, Internal Combustion Engines Applied Thermosciences. John Wiley & Sons, 2001.
  • [2] J. A. Gatowski, E. N. Balles, K. M. Chun, F. E. Nelson, J. A. Ekchian, and J. B. Heywood, Heat release analysis of engine pressure data. SAE Technical Paper 841359, 1984.
  • [3] Gruca M., LCTxr - program do rejestracji i analizy harmonicznej sygnałów. Politechnika Częstochowska 2002.
  • [4] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill series in mechanical engineering. McGraw-Hill, 1988.
  • [5] K. Z. Mendera:, Thermodynamic Analysis of Spark Ignition Engine Pressure Data. Journal of KONES Internal Combustion Engines Vol.11 nr 3-4, 2004. ISSN 1231-4005. str.45-52.
  • [6] K.Z. Mendera, Thermodynamic properties of working fluid of internal combustion engine. Journal of KONES Internal Combustion Engines Vol.11 nr 3-4, 2004. ISSN 1231-4005.
  • [7] K. Z. Mendera, ThermAn – Program for thermodynamic analysis of internal combustion engine cycle. Częstochowa University of Technology. Częstochowa 2005.
  • [8] Oberkampf W. L., Trucano T. G., Verification and Validation in Computational Fluid Dynamics. Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185.
  • [9] R. Stone, Introduction to Internal Combustion Engines. Palgrave, 3rd edition, 1999.
  • [10] G. Woschni, A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Paper 670931, 1967.
  • [11] http://www.fluent.com/.
  • [12] GT Power. Gamma Technologies. http://www.gtisoft.com/.
  • [13] KIVA-2 A computer program for chemically reactive flows with sprays. LA11560MS.
  • [14] http://www.avl.com/.
  • [15] WAVE v5 Engine. Reference Manual. Ricardo 2002.
  • [16] http://www.cd-adapco.com/news/releases/engine.htm.
  • [17] http://www.engineeringtalk.com/news/rca/rca104.html.
  • [18] http://www.software.ricardo.com/.
  • [19] Mendera K. Z., Pasternak M. , Smereka M., Sobiepański M., Sosnowski M., Calibration of spark ignition engine model. Paper submitted for I Congress of PTNSS.
  • [20] Gruca M., Mendera K.Z.: Wyznaczanie GMP tłoka. Paper submitted for Kones 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0022-0096
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.