PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the variety generated by involutive pocrims

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An involutive pocrim (a.k.a. an L0-algebra) is a residuated integral partially ordered commutative monoid with an involution operator, considered as an algebra. It is proved that the variety generated by all involutive pocrims satises no nontrivial idempotent Maltsev condition. That is, no nontrivial (logical and, logical or, o) -equation holds in the congruence lattices of all involutive pocrims. This strengthens a theorem of A.Wroński. The result survives if we restrict the generating class to totally ordered involutive pocrims.
Słowa kluczowe
Rocznik
Tom
Strony
71--86
Opis fizyczny
Bibliogr.39 poz.
Twórcy
Bibliografia
  • [1] W.J. Blok, D. Pigozzi, Algebraizable Logics, Memoirs of the AMS, No. 396, American Mathematical Society, Providence, 1989.
  • [2] W.J. Blok, J.G. Raftery, Failure of the congruence extension property in BCK-algebras and related structures, Math. Japonica 38 (1993), pp. 633-638.
  • [3] W.J. Blok, J.G. Raftery, On the quasivariety of BCK-algebras and its subvarieties, Algebra Universalis 33 (1995), pp. 68-90.
  • [4] W.J. Blok, J.G. Raftery, Varieties of commutative residuated integral pomonoids and their residuation subreducts, J. Algebra 190 (1997), pp. 280-328.
  • [5] C.C. Chang, Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88(1958), pp. 467-490.
  • [6] W.H. Cornish, Varieties generated by finite BCK-algebras, Bull. Austral. Math.Soc. 22 (1980), pp. 411-430.
  • [7] I. Fleischer, Every BCK-algebra is a set of residuables in an integral pomonoid, J.Algebra 119 (1988), pp. 360-365.
  • [8] R. Freese, E.W. Kiss, Algebra Calculator Program, available at http://www.math.hawaii.edu/~ralph/software/uaprog or http://www.cs.elte.hu/~ewkiss/software/uaprog.
  • [9] R. Freese, J.B. Nation, Congruence lattices of semilattices, Pac. J. Math. 49 (1973), pp. 51-58.
  • [10] V.N. Grishin, Impossibility of defining the class of L0-algebras by means of identifities, Mathematical Notes 38 (1985), pp. 861-867. [Translation of Matematicheskie Zametki 38 (1985), pp. 641-651.]
  • [11] D. Higgs, Dually residuated commutative monoids with identity element as least element do not form an equational class, Math. Japonica 29 (1984), pp. 69-75.
  • [12] D. Hobby, R. McKenzie, The Structure of Finite Algebras, Contemporary Mathematics 76, American Mathematical Society (Providence, RI), 1988.
  • [13] P.M. Idziak, Some theorems about BCK-semilattices, Math. Japonica 29 (1984),pp. 919-921.
  • [14] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), pp. 26-29.
  • [15] K. Iséki, BCK-algebras with condition (S), Math. Japonica 24 (1979), pp. 107-119.
  • [16] K. Iséki, On BCK-algebras with condition (S), Math. Japonica 24 (1980), pp. 625-626.
  • [17] K.A. Kearnes, The status of the problems from the book, manuscript, 2001. (This refers to [12].)
  • [18] K.A. Kearnes, E.W. Kiss, The shape of congruence lattices, manuscript.
  • [19] K.A. Kearnes, A. Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8 (1998), pp. 497-531.
  • [20] Y. Komori, The variety generated by BCC-algebras is finitely based, Reports of Faculty of Science, Shizuoka University 17 (1983), pp. 13-16.
  • [21] P.S. Krzystek, O Algebrach Pre-Boole'owskich, Doctoral Dissertation, Jagiellonian University, Krakow, 1983.
  • [22] P. Lipparini, n-Permutable varieties satisfy nontrivial congruence identities, Algebra Universalis 33 (1995), pp. 159-168.
  • [23] P. Lipparini, A characterization of varieties with a difference term, II: Neutral =meet semidistributive, Canad. Math. Bull. 41 (1998), pp. 1318-327.
  • [24] P. Lipparini, An elementary proof that n-permutable varieties satisfy lattice identities, manuscript, 2002.
  • [25] R.K. Meyer, R. Routley, Algebraic analysis of entailment, I, Logique et Analyse N.S. 15 (1972), pp. 407-428.
  • [26] M. Nagayama, On a property of BCK-identities, Studia Logica 53 (1994), pp. 227-234.
  • [27] H. Ono, Y. Komori, Logics without the contraction rule, J. Symbolic Logic 50 (1985), pp. 169-202.
  • [28] M. Pałasiński, Some remarks on BCK-algebras, Math. Seminar Notes Kobe Univ. 8 (1980), pp. 137-144.
  • [29] M. Pałasiński, On ideal and congruence lattices of BCK-algebras, Math. Japonica 26 (1981), pp. 543-544.
  • [30] M. Pałasiński, An embedding theorem for BCK-algebras, Math. Seminar Notes Kobe Univ. 10 (1982), pp. 749-751.
  • [31] M. Pałasiński, A. Wroński, Eight simple questions concerning BCK-algebras, Reports on Mathematical Logic 20 (1986), pp. 87-91.
  • [32] A. Pixley, Local Mal'cev conditions, Canad. Math. Bull. 15 (1972), pp. 559-568.
  • [33] P. Pudlak, J. Tuma, Every finite lattice can be embedded into a finite partition lattice, Algebra Universalis 10 (1980), pp. 74-95.
  • [34] W. Taylor, Varieties obeying homotopy laws, Canad. J. Math. 29 (1977), pp. 498-527.
  • [35] R. Willard, A finite basis theorem for residually finite, congruence meet-semidistributive varieties, J. Symbolic Logic 65 (2000), pp. 187-200.
  • [36] R. Wille, Kongruenzklassengeometrien, Springer Lecture Notes No. 113, 1970.
  • [37] A. Wroński, BCK-algebras do not form a variety, Math. Japonica 28 (1983), pp. 211-213.
  • [38] A. Wroński, Reflections and distensions of BCK-algebras, Math. Japonica 28 (1983), pp. 215-225.
  • [39] A. Wroński, P.S. Krzystek, On pre-Boolean algebras (preliminary report), manuscript, circa 1982.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0021-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.