PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The equational definability of truth predicates

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let S be a structural consequence relation, not assumed to be protoalgebraic. It is proved that the following con- ditions on S are equivalent, where `algebra' means algebra in the signature of S: (1) S is truth-equational, i.e., the truth predicate of the class of reduced matrix models of S is explicitly denable by some xed set of unary equations. (2) The Leibniz operator of S is completely order re ecting on all algebras, i.e., for any set of S{lters F [ fGg of an algebra, if T [F] G then TF G. (3) The Leibniz operator is completely order re ecting on the theories of S. (4) The Suszko operator of S is injective on all algebras. It makes no dierence to the meaning of (1) whether `reduced' is interpreted as Leibniz-reduced or as Suszko-reduced. For the class of Suszko-reduced matrix models of S, (4) ) (1) says that the im- plicit denability of the truth predicate entails its equational de- nability. Previously, this was known only for protoalgebraic sys- tems. The corresponding assertion for the Leibniz-reduced models is shown to be false, i.e., global injectivity of the Leibniz operator does not entail truth-equationality.
Słowa kluczowe
Rocznik
Strony
95--149
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • School of Mathematical Sciences University of KwaZulu-Natal Durban 4001, South Africa, raftery@ukzn.ac.za
Bibliografia
  • [1] A.R. Anderson, N.D. Belnap, Jnr., Entailment: The Logic of Relevance and Necessity, Volume 1, Princeton University Press, 1975.
  • [2] M. Ardeshir and W. Ruitenberg, Basic Propositional Calculus I, Math. Log. Quart. 44 (1998), pp. 317-343.
  • [3] A. Avron, Relevance and paraconsistency - a new approach, J. Symbolic Logic 55 (1990), pp. 707-732.
  • [4] A. Avron, Relevance and paraconsistency - a new approach. Part II: The formal systems, Notre Dame J. Formal Logic 31 (1990), pp. 169-202.
  • [5] A. Avron, Multiplicative conjunction as an extensional conjunction, Logic Journal of the IGPL 5 (1997), pp. 181-208.
  • [6] W.J. Blok and B. Jónsson, Algebraic structures for logic, A course given at the 23rd Holiday Mathematics Symposium, New Mexico State University, January 1999.Available at http://math.nmsu.edu/~holysymp/.
  • [7] W.J. Blok and B. Jóonsson, Equivalence of consequence operations, Studia Logica, to appear.
  • [8] W.J. Blok and D. Pigozzi, Protoalgebraic logics, Studia Logica 45 (1986), pp. 337-369.
  • [9] W.J. Blok and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, Number 396, Amer. Math. Soc., Providence, 1989.
  • [10] W.J. Blok and D. Pigozzi, Algebraic semantics for universal Horn logic without equality, in A. Romanowska and J.D.H. Smith (eds.), Universal Algebra and Quasigroup Theory, Research and Exposition in Mathematics, Vol. 19, Heldermann Verlag, Berlin, 1992, pp. 1-56.
  • [11] W.J. Blok and J.G. Raftery, Fragments of R{mingle, Studia Logica 78 (2004), pp.59-106.
  • [12] W.J. Blok and J.G. Raftery, Assertionally equivalent quasivarieties, manuscript.
  • [13] W.J. Blok and J. Rebagliato, Algebraic semantics for deductive systems, Studia Logica 74 (2003), pp. 153-180.
  • [14] S.L. Bloom, Some theorems on structural consequence relations, Studia Logica 34 (1975), pp. 1-9.
  • [15] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Springer-Verlag, New York, 1981.
  • [16] S. Celani and R. Jansana, A closer look at some subintuitionistic logics, Notre Dame J. Formal Logic 42 (2001), pp. 225-255.
  • [17] S. Celani and R. Jansana, Bounded distributive lattices with strict implication, Math.Log. Quart. 51 (2005), pp. 219-246.
  • [18] C.C. Chang and H.J. Keisler, Model Theory, 2nd ed., North-Holland, Amsterdam, 1976.
  • [19] J. Czelakowski, Equivalential logics (I), (II), Studia Logica 40 (1981), pp. 227-236, 355-372.
  • [20] J. Czelakowski, Protoalgebraic Logics, Kluwer, Dordrecht, 2001.
  • [21] J. Czelakowski, The Suszko operator. Part I, Studia Logica 74 (2003), pp. 181-231.
  • [22] J. Czelakowski and R. Jansana, Weakly algebraizable logics, J. Symbolic Logic 65 (2000), pp. 641-668.
  • [23] M.A. Dickmann, Large Infinitary Languages. Model Theory, North-Holland, Amsterdam, 1975.
  • [24] J.M. Dunn, Algebraic completeness results for R{mingle and its extensions, J. Symbolic Logic 35 (1970), pp. 1-13.
  • [25] J.M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic Vol. 7, Springer-Verlag, 1996.
  • [26] J.M. Font, R. Jansana and D. Pigozzi, A survey of abstract algebraic logic, Studia Logica 74 (2003), pp. 13-97.
  • [27] J.M. Font and G. Rodríguez, Note on algebraic models for relevance logic, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36 (1990), pp. 535-540.
  • [28] B. Herrmann, Equivalential and algebraizable logics, Studia Logica 57 (1996), pp. 419-436.
  • [29] B. Herrmann, Characterizing equivalential and algebraizable logics by the Leibniz operator, Studia Logica 58 (1997), pp. 305-323.
  • [30] H.J. Keisler, Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971.
  • [31] Y. Komori, Syntactical investigations into BI logic and BB0I logic, Studia Logica 53 (1994), pp. 397-416.
  • [32] E.G.K. López-Escobar, An interpolation theorem for denumerably long sentences,Fund. Math. 57 (1965), pp. 253-272.
  • [33] J. Łoś and R. Suszko, Remarks on sentential logics, Proc. Kon. Nederl. Akad. van Wetenschappen, Series A 61 (1958), pp. 177-183.
  • [34] J.I. Malitz, Universal classes in infinitary languages, Duke Math. J. 36 (1969), pp. 621-630.
  • [35] E.P. Martin and R.K. Meyer, Solution to the P-W problem, J. Symbolic Logic 47 (1982), pp. 869-887.
  • [36] H. Ono, Substructural logics and residuated lattices { an introduction, in V.F. Hendricks and J. Malinowski (eds.), 50 Years of Studia Logica, Trends in Logic vol. 20, Kluwer, 2003, pp. 177-212.
  • [37] A. Padoa, Logical introduction to any deductive theory, English translation in [49], pp. 118-123, of Essai d'une théorie algébrique des nombres entiers, précédé d'une introduction logique á une théorie déductive quelconque, Bibliothéque du Congrés international de philosophie, Paris 1900, Vol. 3, Armand Colin, Paris, 1901, pp. 309-365.
  • [38] R.Z. Parks, A note on R-mingle and Sobociński's three-valued logic, Notre Dame J.Formal Logic 13 (1972), pp. 227-228.
  • [39] D. Pigozzi, Fregean algebraic logic, in H. Andréka, J.D. Monk, I. Nemeti (eds.), Algebraic Logic, Colloquia Mathematica Societatis János Bolyai 54, Budapest (Hungary), 1988, pp. 473-502.
  • [40] T. Prucnal and A. Wroński, An algebraic characterization of the notion of structural completeness, Bulletin of the Section of Logic 3 (1974), pp. 30-33.
  • [41] W. Rautenberg, On reduced matrices, Studia Logica 52 (1993), pp. 63-72.
  • [42] P. Schroeder-Heister and K. Došen (eds.), Substructural Logics, Clarendon Press, Oxford, 1993.
  • [43] B. Sobociński, Axiomatization of a partial system of three-valued calculus of propositions, The Journal of Computing Systems 1 (1952), pp. 23-55.
  • [44] Y. Suzuki, F. Wolter and M. Zakharyaschev, Speaking about transitive frames in propositional languages, Journal of Logic, Language and Information 7 (1998), pp.317-339.
  • [45] A. Tarski, Some methodological investigations on the definability of concepts, English translation in [46], pp. 296{319, of Einige methodologische Untersuchungen über die Definierbarkeit der Begrié, Erkenntnis 5 (1935), pp. 80{100, supplemented by passages from Z badań metodologicznych nad definiowalnością terminów, Przegląd Filozoficzny 37 (1934), pp. 438-460.
  • [46] A. Tarski, Logic, Semantics, Metamathematics, Papers from 1923 to 1938, 2nd ed., translated by J.H. Woodger, edited by J. Corcoran, Hackett Publishing Co.,Indianapolis, 1983.
  • [47] A.S. Troelstra, Lectures on Linear Logic, CSLI Lecture Notes No. 29, 1992.
  • [48] C.J. van Alten and J.G. Raftery, Rule separation and embedding theorems for logics without weakening, Studia Logica 76 (2004), pp. 241-274.
  • [49] J. van Heijenoort (ed.), From Frege to Gödel. A Sourcebook of Mathematical Logic,1879-1931, Harvard University Press, Cambridge, Massachusetts, 1969. Fourth Printing, 1981.
  • [50] A. Visser, A propositional logic with explicit fixed points, Studia Logica 40 (1981), pp. 155-175.
  • [51] R. Wójcicki, Theory of Logical Calculi, Kluwer, Dordrecht, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0021-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.