PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Systematically Exploring Decomposition Routes of HMX Explosive Molecule

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This investigation performs three quantum chemical calculations to determine an unrealizable profile of the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) unimolecular decomposition. First, the bonding energies of HMX and its corresponding decomposition species were calculated using the differential over lap (INDO) program, which identifies the weak est bonding site for reference and determines the site of easiest cleavage. Second, the molecular energies of all species were estimated by performing density-functional theory (DFT) calculations, yielding an accurate enthalpy of formation following calibration according to a five-parametric equation. Finally, all decomposition transition states were sought using Quasi-Newton and Synchronous Transit approaches (QST3 procedure). Computational results reveal that the activation energy of direct cis-form HONO elimination is lower than that of direct trans-form HONO elimination and that of the two-stage elimination of two forms of HONO (N-N bond fission combined with C-H bond breaking) in the initial decomposition step, which are 234.7 kJ/mol and 147.9-171.4 kJ/mol, respectively.
Rocznik
Strony
1677--1686
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
autor
autor
  • Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense Univer sity, Ta Hsi, Taoyuan, 33509, Taiwan, R.O.C, mcliu@ccit.edu.tw
Bibliografia
  • 1.    Zhang S. and Truong T.N., J. Phys. Chem. A, 105, 2427 (2001).
  • 2.    Melius C.F., "Thermochemical Modeling: I. Application to Decomposition of Energetic Materials", Kluwer Academic: Dordrecht, 1990.
  • 3.    Zhao X.E., Hinsta J. and Lee Y.T., J. Chem. Phys., 88, 801 (1988).
  • 4. Botcher T.R. and Wight C.A., J. Phys. Chem., 98, 5441 (1994).
  • 5.    Behrens R Jr., J. Phys. Chem., 95, 5838 (1991).
  • 6.    Behrens R Jr., J. Phys. Chem., 94, 6706 (1990).
  • 7.    Wang J. and Brower M.K.R., J. Org. Chem., 62, 9055 (1997).
  • 8.    Ward M.J., Son S.F. and Brewster M.Q., Combustion and Flame, 114, 556 (1998).
  • 9.   Yu C.L., Zhang Y.X. and Bauer S.H., J. Mol Struct. (Theochem), 432, 63 (1998).
  • 10. Gongwer P.E. and Brill T.B., Combustion and Flame, 115, 417 (1998).
  • 11. Garland N.L. and Nelson H.H., J. Phys. Chem. B, 102, 2663 (1998).
  • 12.    Zhang Y.X. and Bauer S.H., Int. J. Chem. Kinet., 31, 655 (1999).
  • 13.    Oyumi Y. and Brill T.B., Combustion and Flame, 62, 225 (1985).
  • 14.    Oyumi Y, Brill T.B. and Rheingold A.L., J. Phys. Chem., 89, 4317 (1985).
  • 15.    Chen C., Chang C.W. and Wang Y.M., J. Mol. Struct. (Theochem), 311, 19 (1994).
  • 16.    Chen C., Ellison F.O., Chang M.C. and Chou J.L., J. Chinese Chemical Soc., 32, 385 (1985).
  • 17.    Liu M.H. and Chen C., J. Comput. Chem., 27, 537 (2006).
  • 18.    Hehre W.J., Radom L., Schleyer P.v.R. and Pople J.A., "Ab Initio Molecular Orbital Theory", Wiley, New York, 1986.
  • 19.    Deleuze M., Delhalle J., Pickup B.T. and Calais J.L., Phys. Rev B, 46, 15668 (1992).
  • 20.    Harris N.J. and Lammertsma K., J. Am. Chem. Soc., 119, 6583 (1997).
  • 21.    Frisch M. J., Trucks G. W., Schlegel H.B., Scuseria G.E., Robb M. A., Cheeseman J.R., Zakrzewski V.G.,Montgomery J.A.Jr., Stratmann R.E., Burant J.C., Dapprich S.J., Millam M., Daniels D.A., Kudin K.N.,Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M.; Cammi R., Mennucci B., Pomeili C., Adamo C.S., Clifford J., Ochterski G., Petersson A., Ayala P.Y, Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J., Cioslowski B.,J., Ortiz J.V., Stefanoy B.B., Liu G., Liashenko A.,Piskorz P, Komaromi L, Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.,Nanayakkara Y, Gonzalez A.C., Challacombe M., Gili M.W., Johnson B., Chen W., Wong M.W.,Andres J.L., Gonzalez C., Head-Gordon M., Replogle E.S. and Pople, J.A., Gaussian 98, Revision A.7,Gaussian, Inc., Pittsburgh PA, 1998.
  • 22.    Pople J.A. and Beveridge D.L., "Approximate Molecular Orbital Theory", McGraw-Hill, New York,1970.
  • 23.    Liu M.H., Chen C. and Hong Y.S., Int. J. Quant. Chem., 102(4), 398 (2005).
  • 24. Peng C. and Schlegel H.B., Israel J. Chem., 33, 449 (1993).
  • 25.    Peng C., Ayala P.V, Schlegel H.B. and Frisch M.J., J. Comput. Chem., 17, 49 (1996).
  • 26.    Burcat A., J. Propulsion and Power, 16, 105 (2000).
  • 27.    Pedley J.B., Naylor R.N. and Kirby S.P., "Thermochemical Data of Organic Compounds" 2nd ed., Chapman and Hall, London, 1986.
  • 28.    NIST Chemistry WebBook, National Institute of Standards and Technology NIST, 100 Bureau Drive, Stop 1070, Gaithersburg, MD 20899-1070, 2005.
  • 29.    Yaws C.L., "Thermodynamic and Physical Properry Data", Gulf Publishing Company, Texas, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0019-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.